BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25432079)

  • 1. Predicting the potential ankylosing spondylitis-related genes utilizing bioinformatics approaches.
    Zhao H; Wang D; Fu D; Xue L
    Rheumatol Int; 2015 Jun; 35(6):973-9. PubMed ID: 25432079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of potential target genes for ankylosing spondylitis treatment.
    Ni Y; Jiang C
    Medicine (Baltimore); 2018 Feb; 97(8):e9760. PubMed ID: 29465556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics Analysis of the Molecular Mechanism and Potential Treatment Target of Ankylosing Spondylitis.
    Meng F; Du N; Xu D; Kuai L; Liu L; Xiu M
    Comput Math Methods Med; 2021; 2021():7471291. PubMed ID: 34335866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Differentially Expressed Genes and Signaling Pathways in Acute Myocardial Infarction Based on Integrated Bioinformatics Analysis.
    Chen DQ; Kong XS; Shen XB; Huang MZ; Zheng JP; Sun J; Xu SH
    Cardiovasc Ther; 2019; 2019():8490707. PubMed ID: 31772617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Bioinformatics Analysis for the Screening of Hub Genes and Therapeutic Drugs in Hepatocellular Carcinoma.
    Su Q; Li W; Zhang X; Wu R; Zheng K; Zhou T; Dong Y; He Y; Wang D; Ran J
    Curr Pharm Biotechnol; 2023; 24(8):1035-1058. PubMed ID: 35762549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the underlying genes and mechanism of familial hypercholesterolemia through bioinformatics analysis.
    Wang D; Liu B; Xiong T; Yu W; She Q
    BMC Cardiovasc Disord; 2020 Sep; 20(1):419. PubMed ID: 32938406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDGFRB as a potential therapeutic target of ankylosing spondylitis: validation following bioinformatics analysis.
    Feng X; Zhu S; Yan Z; Wang C; Tong W; Xu W
    Cell Mol Biol (Noisy-le-grand); 2020 Sep; 66(6):127-134. PubMed ID: 33040798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Biomarker
    Xiao B; Cui PL; Li HC; Wang C; Zhang YZ; Wu ZM; Wu CA
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):343. PubMed ID: 38179754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A differential expression network method identifies ankylosing spondylitis-related genes.
    Gao P; Fu S; Liu Y; Zi X
    J Cancer Res Ther; 2018; 14(4):833-837. PubMed ID: 29970661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease.
    Liu J; Jing L; Tu X
    BMC Cardiovasc Disord; 2016 Mar; 16():54. PubMed ID: 26944061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-blood gene expression profiling in ankylosing spondylitis identifies novel candidate genes that may contribute to the inflammatory and tissue-destructive disease aspects.
    Chen K; Wei XZ; Zhu XD; Bai YS; Chen Y; Wang CF; Chen ZQ; Li M
    Cell Immunol; 2013; 286(1-2):59-64. PubMed ID: 24326123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible Molecular Markers for the Diagnosis of Pancreatic Ductal Adenocarcinoma.
    Shen Q; Yu M; Jia JK; Li WX; Tian YW; Xue HZ
    Med Sci Monit; 2018 Apr; 24():2368-2376. PubMed ID: 29671412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential regulatory mechanisms of the gonadotropin-releasing hormone in gonadotropin transcriptions identified with bioinformatics analyses.
    Xiang W; Zhang B; Lv F; Feng G; Chen L; Yang F; Zhang K; Cao C; Wang P; Chu M
    Reprod Biol Endocrinol; 2017 Jun; 15(1):46. PubMed ID: 28623929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Regulatory Role of Ferroptosis in Ankylosing Spondylitis via Consensus Clustering of Ferroptosis-Related Genes and Weighted Gene Co-Expression Network Analysis.
    Rong T; Jia N; Wu B; Sang D; Liu B
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 36011284
    [No Abstract]   [Full Text] [Related]  

  • 15. Uncovering the pathogenesis and identifying novel targets of pancreatic cancer using bioinformatics approach.
    Zhao LL; Zhang T; Zhuang LW; Yan BZ; Wang RF; Liu BR
    Mol Biol Rep; 2014 Jul; 41(7):4697-704. PubMed ID: 24728565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening for potential genes associated with bone overgrowth after mid-shaft femur fracture in a rat model.
    Liu C; Liu Y; Zhang W; Liu X
    J Orthop Surg Res; 2017 Jan; 12(1):8. PubMed ID: 28095896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of differentially expressed genes and regulatory relationships in Huntington's disease by bioinformatics analysis.
    Dong X; Cong S
    Mol Med Rep; 2018 Mar; 17(3):4317-4326. PubMed ID: 29328442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome network analysis reveals potential candidate genes for ankylosing spondylitis.
    Zhu ZQ; Tang JS; Cao XJ
    Eur Rev Med Pharmacol Sci; 2013 Dec; 17(23):3178-85. PubMed ID: 24338459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Biomarkers for Early Diagnosis of Acute Myocardial Infarction.
    Ge WH; Lin Y; Li S; Zong X; Ge ZC
    J Cell Biochem; 2018 Jan; 119(1):650-658. PubMed ID: 28636181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting of disease genes for gestational diabetes mellitus based on network and functional consistency.
    Zhang Q; He M; Wang J; Liu S; Cheng H; Cheng Y
    Eur J Obstet Gynecol Reprod Biol; 2015 Mar; 186():91-6. PubMed ID: 25666344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.