These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25432469)

  • 1. Impact of biodiversity and seasonality on Lyme-pathogen transmission.
    Lou Y; Wu J; Wu X
    Theor Biol Med Model; 2014 Nov; 11():50. PubMed ID: 25432469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change.
    Mannelli A; Bertolotti L; Gern L; Gray J
    FEMS Microbiol Rev; 2012 Jul; 36(4):837-61. PubMed ID: 22091928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the seasonality of Lyme disease risk and the potential impacts of a warming climate within the heterogeneous landscapes of Scotland.
    Li S; Gilbert L; Harrison PA; Rounsevell MD
    J R Soc Interface; 2016 Mar; 13(116):. PubMed ID: 27030039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiversity and Lyme disease: dilution or amplification?
    Ogden NH; Tsao JI
    Epidemics; 2009 Sep; 1(3):196-206. PubMed ID: 21352766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tick Ixodes scapularis.
    Ogden NH; Bigras-Poulin M; O'callaghan CJ; Barker IK; Kurtenbach K; Lindsay LR; Charron DF
    Parasitology; 2007 Feb; 134(Pt 2):209-27. PubMed ID: 17032476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lyme disease pathogen has no effect on the survival of its rodent reservoir host.
    Voordouw MJ; Lachish S; Dolan MC
    PLoS One; 2015; 10(2):e0118265. PubMed ID: 25688863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm.
    Randolph SE; Dobson AD
    Parasitology; 2012 Jun; 139(7):847-63. PubMed ID: 22336330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abiotic and habitat drivers of tick vector abundance, diversity, phenology and human encounter risk in southern California.
    MacDonald AJ
    PLoS One; 2018; 13(7):e0201665. PubMed ID: 30063752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicted outcomes of vaccinating wildlife to reduce human risk of Lyme disease.
    Tsao K; Fish D; Galvani AP
    Vector Borne Zoonotic Dis; 2012 Jul; 12(7):544-51. PubMed ID: 22251312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The role of ticks in the epidemiology of Lyme borreliosis].
    Wegner Z; Stańczak J
    Przegl Epidemiol; 1995; 49(3):245-50. PubMed ID: 7491418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of the aggregation of ticks on small mammal hosts for the establishment and persistence of tick-borne pathogens: an investigation using the R(0) model.
    Harrison A; Bennett NC
    Parasitology; 2012 Oct; 139(12):1605-13. PubMed ID: 23036641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Which forest bird species are the main hosts of the tick, Ixodes ricinus, the vector of Borrelia burgdorferi sensu lato, during the breeding season?
    Marsot M; Henry PY; Vourc'h G; Gasqui P; Ferquel E; Laignel J; Grysan M; Chapuis JL
    Int J Parasitol; 2012 Jul; 42(8):781-8. PubMed ID: 22732161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular survival strategies of the Lyme disease spirochete Borrelia burgdorferi.
    Singh SK; Girschick HJ
    Lancet Infect Dis; 2004 Sep; 4(9):575-83. PubMed ID: 15336225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-feeding transmission in Lyme disease pathogens.
    Voordouw MJ
    Parasitology; 2015 Feb; 142(2):290-302. PubMed ID: 25295405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lyme disease: recent advances and perspectives.
    Petnicki-Ocwieja T; Brissette CA
    Front Cell Infect Microbiol; 2015; 5():27. PubMed ID: 25883907
    [No Abstract]   [Full Text] [Related]  

  • 16. Lyme disease and babesiosis: preliminary findings on the transmission risk in highly frequented areas of the Monti Sibillini National Park (Central Italy).
    Curioni V; Cerquetella S; Scuppa P; Pasqualini L; Beninati T; Favia G
    Vector Borne Zoonotic Dis; 2004; 4(3):214-20. PubMed ID: 15631066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associations between Ixodes scapularis ticks and small mammal hosts in a newly endemic zone in southeastern Canada: implications for Borrelia burgdorferi transmission.
    Bouchard C; Beauchamp G; Nguon S; Trudel L; Milord F; Lindsay LR; Bélanger D; Ogden NH
    Ticks Tick Borne Dis; 2011 Dec; 2(4):183-90. PubMed ID: 22108010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genetic diversity of Lyme disease bacteria in Northern Californian ticks and their vertebrate hosts.
    Swei A; Bowie VC; Bowie RC
    Ticks Tick Borne Dis; 2015 Apr; 6(3):414-23. PubMed ID: 25843810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission of the agent of Lyme disease on a subtropical island.
    Matuschka FR; Eiffert H; Ohlenbusch A; Richter D; Schein E; Spielman A
    Trop Med Parasitol; 1994 Mar; 45(1):39-44. PubMed ID: 8066380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecology of Ixodes dammini-borne human babesiosis and Lyme disease.
    Spielman A; Wilson ML; Levine JF; Piesman J
    Annu Rev Entomol; 1985; 30():439-60. PubMed ID: 3882050
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.