These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25432627)

  • 1. Sensory feedback in cockroach locomotion: current knowledge and open questions.
    Ayali A; Couzin-Fuchs E; David I; Gal O; Holmes P; Knebel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Sep; 201(9):841-50. PubMed ID: 25432627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proprioceptive feedback reinforces centrally generated stepping patterns in the cockroach.
    Fuchs E; Holmes P; David I; Ayali A
    J Exp Biol; 2012 Jun; 215(Pt 11):1884-91. PubMed ID: 22573767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach.
    Ridgel AL; Ritzmann RE; Schaefer PL
    J Exp Biol; 2003 Dec; 206(Pt 24):4453-65. PubMed ID: 14610030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of feedback on stability and maneuverability of a phase-reduced model for cockroach locomotion.
    Proctor JL; Holmes P
    Biol Cybern; 2018 Aug; 112(4):387-401. PubMed ID: 29948143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans.
    Grabowska M; Toth TI; Smarandache-Wellmann C; Daun-Gruhn S
    J Comput Neurosci; 2015 Jun; 38(3):601-16. PubMed ID: 25904469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential control of temporal and spatial aspects of cockroach leg coordination.
    Couzin-Fuchs E; Gal O; Holmes P; Ayali A
    J Insect Physiol; 2015 Aug; 79():96-104. PubMed ID: 26086675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A phase-reduced neuro-mechanical model for insect locomotion: feed-forward stability and proprioceptive feedback.
    Proctor J; Kukillaya RP; Holmes P
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5087-104. PubMed ID: 20921014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
    Szczecinski NS; Brown AE; Bender JA; Quinn RD; Ritzmann RE
    Biol Cybern; 2014 Feb; 108(1):1-21. PubMed ID: 24178847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking.
    Zill SN; Keller BR; Duke ER
    J Neurophysiol; 2009 May; 101(5):2297-304. PubMed ID: 19261716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback.
    Kukillaya R; Proctor J; Holmes P
    Chaos; 2009 Jun; 19(2):026107. PubMed ID: 19566267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-level control of rapid wall following in the American cockroach.
    Cowan NJ; Lee J; Full RJ
    J Exp Biol; 2006 May; 209(Pt 9):1617-29. PubMed ID: 16621943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion control of hybrid cockroach robots.
    Sanchez CJ; Chiu CW; Zhou Y; González JM; Vinson SB; Liang H
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25740855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descending control of turning behavior in the cockroach, Blaberus discoidalis.
    Ridgel AL; Alexander BE; Ritzmann RE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):385-402. PubMed ID: 17123086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of a complex movement: fixed and variable components of the cockroach escape behavior.
    Camhi JM; Levy A
    J Comp Physiol A; 1988 Jul; 163(3):317-28. PubMed ID: 3184004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of pattern generation of cockroach walking reconsidered.
    Zill SN
    J Neurobiol; 1986 Jul; 17(4):317-28. PubMed ID: 3746290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The subesophageal ganglion modulates locust inter-leg sensory-motor interactions via contralateral pathways.
    Knebel D; Wörner J; Rillich J; Nadler L; Ayali A; Couzin-Fuchs E
    J Insect Physiol; 2018; 107():116-124. PubMed ID: 29577874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Certain functional connections of neurons control the walking of the cockroach Periplaneta americana].
    Fedin AN
    Zh Evol Biokhim Fiziol; 1980; 16(5):454-60. PubMed ID: 6252735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind spectra and the response of the cercal system in the cockroach.
    Rinberg D; Davidowitz H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):867-76. PubMed ID: 14566422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory.
    Schmitt J; Holmes P
    Biol Cybern; 2000 Dec; 83(6):501-15. PubMed ID: 11130583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Localization of the receptors that initiate and maintain flight in the cockroach, Periplaneta americana].
    Iagodin SV
    Zh Evol Biokhim Fiziol; 1979; 15(6):576-82. PubMed ID: 516944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.