These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25432627)

  • 21. A mathematical modeling study of inter-segmental coordination during stick insect walking.
    Daun-Gruhn S
    J Comput Neurosci; 2011 Apr; 30(2):255-78. PubMed ID: 20567889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual differences and variability in the timing of motor activity during walking in insects.
    Delcomyn F; Cocatre-Zilgien JH
    Biol Cybern; 1988; 59(6):379-84. PubMed ID: 3207776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Existence of a Long-Range Caudo-Rostral Sensory Influence in Terrestrial Locomotion.
    Grabowska M; Toth TI; Büschges A; Daun S
    J Neurosci; 2022 Jun; 42(24):4841-4851. PubMed ID: 35545434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leg-local neural mechanisms for searching and learning enhance robotic locomotion.
    Szczecinski NS; Quinn RD
    Biol Cybern; 2018 Apr; 112(1-2):99-112. PubMed ID: 28782078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parasitoid wasp uses a venom cocktail injected into the brain to manipulate the behavior and metabolism of its cockroach prey.
    Gal R; Rosenberg LA; Libersat F
    Arch Insect Biochem Physiol; 2005 Dec; 60(4):198-208. PubMed ID: 16304619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensory processing within cockroach antenna enables rapid implementation of feedback control for high-speed running maneuvers.
    Mongeau JM; Sponberg SN; Miller JP; Full RJ
    J Exp Biol; 2015 Aug; 218(Pt 15):2344-54. PubMed ID: 26026042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New vistas on the initiation and maintenance of insect motor behaviors revealed by specific lesions of the head ganglia.
    Gal R; Libersat F
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Sep; 192(9):1003-20. PubMed ID: 16733727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Central-complex control of movement in the freely walking cockroach.
    Martin JP; Guo P; Mu L; Harley CM; Ritzmann RE
    Curr Biol; 2015 Nov; 25(21):2795-2803. PubMed ID: 26592340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pars intercerebralis as a modulator of locomotor rhythms and feeding in the American cockroach, Periplaneta americana.
    Matsui T; Matsumoto T; Ichihara N; Sakai T; Satake H; Watari Y; Takeda M
    Physiol Behav; 2009 Mar; 96(4-5):548-56. PubMed ID: 19146864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural activity in the central complex of the cockroach brain is linked to turning behaviors.
    Guo P; Ritzmann RE
    J Exp Biol; 2013 Mar; 216(Pt 6):992-1002. PubMed ID: 23197098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane-II. Application.
    Schmitt J; Holmes P
    Biol Cybern; 2000 Dec; 83(6):517-27. PubMed ID: 11130584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leg design in hexapedal runners.
    Full RJ; Blickhan R; Ting LH
    J Exp Biol; 1991 Jul; 158():369-90. PubMed ID: 1919412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of static load on motor behavior of the cockroach Periplaneta americana].
    Gorelkina VS; Severina IIu; Isavnina IL; Sviderskiĭ VL
    Zh Evol Biokhim Fiziol; 2008; 44(3):245-9. PubMed ID: 18727411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decoding the essential interplay between central and peripheral control in adaptive locomotion of amphibious centipedes.
    Yasui K; Kano T; Standen EM; Aonuma H; Ijspeert AJ; Ishiguro A
    Sci Rep; 2019 Dec; 9(1):18288. PubMed ID: 31792255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot.
    Jayaram K; Full RJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E950-7. PubMed ID: 26858443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data?
    Srinivasan M; Holmes P
    J Theor Biol; 2008 Nov; 255(1):1-7. PubMed ID: 18671984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perturbation of the motor system in freely walking cockroaches. I. Rear leg amputation and the timing of motor activity in leg muscles.
    Delcomyn F
    J Exp Biol; 1991 Mar; 156():483-502. PubMed ID: 2051133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving horizontal plane locomotion via leg angle control.
    Wickramasuriya A; Schmitt J
    J Theor Biol; 2009 Feb; 256(3):414-27. PubMed ID: 18951907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.