These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 25432675)
1. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Inokuma K; Yoshida T; Ishii J; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2015 Feb; 99(4):1655-63. PubMed ID: 25432675 [TBL] [Abstract][Full Text] [Related]
2. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Shigechi H; Koh J; Fujita Y; Matsumoto T; Bito Y; Ueda M; Satoh E; Fukuda H; Kondo A Appl Environ Microbiol; 2004 Aug; 70(8):5037-40. PubMed ID: 15294847 [TBL] [Abstract][Full Text] [Related]
3. Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Yamada R; Tanaka T; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2010 Feb; 85(5):1491-8. PubMed ID: 19707752 [TBL] [Abstract][Full Text] [Related]
4. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903 [TBL] [Abstract][Full Text] [Related]
5. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
6. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627 [TBL] [Abstract][Full Text] [Related]
7. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations. Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077 [TBL] [Abstract][Full Text] [Related]
8. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells. Chen JP; Wu KW; Fukuda H Appl Biochem Biotechnol; 2008 Mar; 145(1-3):59-67. PubMed ID: 18425612 [TBL] [Abstract][Full Text] [Related]
9. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Murai T; Ueda M; Shibasaki Y; Kamasawa N; Osumi M; Imanaka T; Tanaka A Appl Microbiol Biotechnol; 1999 Jan; 51(1):65-70. PubMed ID: 10077821 [TBL] [Abstract][Full Text] [Related]
10. Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases. Kotaka A; Sahara H; Hata Y; Abe Y; Kondo A; Kato-Murai M; Kuroda K; Ueda M Biosci Biotechnol Biochem; 2008 May; 72(5):1376-9. PubMed ID: 18460787 [TBL] [Abstract][Full Text] [Related]
11. Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, alpha-amylase and debranching enzyme. Kim JH; Kim HR; Lim MH; Ko HM; Chin JE; Lee HB; Kim IC; Bai S Biotechnol Lett; 2010 May; 32(5):713-9. PubMed ID: 20131079 [TBL] [Abstract][Full Text] [Related]
12. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2010 Jun; 87(1):109-15. PubMed ID: 20180115 [TBL] [Abstract][Full Text] [Related]
13. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris. He Z; Zhang L; Mao Y; Gu J; Pan Q; Zhou S; Gao B; Wei D BMC Biotechnol; 2014 Dec; 14():114. PubMed ID: 25539598 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Khaw TS; Katakura Y; Koh J; Kondo A; Ueda M; Shioya S Appl Microbiol Biotechnol; 2006 May; 70(5):573-9. PubMed ID: 16133340 [TBL] [Abstract][Full Text] [Related]
15. One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing alpha-amylase, glucoamylase and pullulanase. Janse BJ; Pretorius IS Appl Microbiol Biotechnol; 1995 Mar; 42(6):878-83. PubMed ID: 7766088 [TBL] [Abstract][Full Text] [Related]
16. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Kondo A; Shigechi H; Abe M; Uyama K; Matsumoto T; Takahashi S; Ueda M; Tanaka A; Kishimoto M; Fukuda H Appl Microbiol Biotechnol; 2002 Mar; 58(3):291-6. PubMed ID: 11935178 [TBL] [Abstract][Full Text] [Related]
17. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases. Favaro L; Viktor MJ; Rose SH; Viljoen-Bloom M; van Zyl WH; Basaglia M; Cagnin L; Casella S Biotechnol Bioeng; 2015 Sep; 112(9):1751-60. PubMed ID: 25786804 [TBL] [Abstract][Full Text] [Related]
18. Heterologous expression and efficient ethanol production of a Rhizopus glucoamylase gene in Saccharomyces cerevisiae. Yang S; Jia N; Li M; Wang J Mol Biol Rep; 2011 Jan; 38(1):59-64. PubMed ID: 20238168 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation. Rajoka MI; Yasmin A; Latif F Lett Appl Microbiol; 2004; 39(1):13-8. PubMed ID: 15189282 [TBL] [Abstract][Full Text] [Related]
20. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol. Wang R; Wang D; Gao X; Hong J Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]