These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 25433029)
1. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. Conde A; Regalado A; Rodrigues D; Costa JM; Blumwald E; Chaves MM; Gerós H J Exp Bot; 2015 Feb; 66(3):889-906. PubMed ID: 25433029 [TBL] [Abstract][Full Text] [Related]
2. Profiling of sugar transporter genes in grapevine coping with water deficit. Medici A; Laloi M; Atanassova R FEBS Lett; 2014 Nov; 588(21):3989-97. PubMed ID: 25261250 [TBL] [Abstract][Full Text] [Related]
3. Postharvest dehydration induces variable changes in the primary metabolism of grape berries. Conde A; Soares F; Breia R; Gerós H Food Res Int; 2018 Mar; 105():261-270. PubMed ID: 29433214 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). Savoi S; Wong DC; Arapitsas P; Miculan M; Bucchetti B; Peterlunger E; Fait A; Mattivi F; Castellarin SD BMC Plant Biol; 2016 Mar; 16():67. PubMed ID: 27001212 [TBL] [Abstract][Full Text] [Related]
5. Cultivar specific metabolic changes in grapevines berry skins in relation to deficit irrigation and hydraulic behavior. Hochberg U; Degu A; Cramer GR; Rachmilevitch S; Fait A Plant Physiol Biochem; 2015 Mar; 88():42-52. PubMed ID: 25635762 [TBL] [Abstract][Full Text] [Related]
7. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
8. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. Hayes MA; Davies C; Dry IB J Exp Bot; 2007; 58(8):1985-97. PubMed ID: 17452752 [TBL] [Abstract][Full Text] [Related]
9. An update on sugar transport and signalling in grapevine. Lecourieux F; Kappel C; Lecourieux D; Serrano A; Torres E; Arce-Johnson P; Delrot S J Exp Bot; 2014 Mar; 65(3):821-32. PubMed ID: 24323501 [TBL] [Abstract][Full Text] [Related]
10. Potassium transport in developing fleshy fruits: the grapevine inward K(+) channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells. Cuéllar T; Azeem F; Andrianteranagna M; Pascaud F; Verdeil JL; Sentenac H; Zimmermann S; Gaillard I Plant J; 2013 Mar; 73(6):1006-18. PubMed ID: 23217029 [TBL] [Abstract][Full Text] [Related]
11. Grape Metabolic Response to Postveraison Water Deficit Is Affected by Interseason Weather Variability. Herrera JC; Hochberg U; Degu A; Sabbatini P; Lazarovitch N; Castellarin SD; Fait A; Alberti G; Peterlunger E J Agric Food Chem; 2017 Jul; 65(29):5868-5878. PubMed ID: 28661689 [TBL] [Abstract][Full Text] [Related]
12. An in vivo experimental system to study sugar phloem unloading in ripening grape berries during water deficiency stress. Wang ZP; Deloire A; Carbonneau A; Federspiel B; Lopez F Ann Bot; 2003 Oct; 92(4):523-8. PubMed ID: 12907466 [TBL] [Abstract][Full Text] [Related]
13. A grapevine Shaker inward K(+) channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Cuéllar T; Pascaud F; Verdeil JL; Torregrosa L; Adam-Blondon AF; Thibaud JB; Sentenac H; Gaillard I Plant J; 2010 Jan; 61(1):58-69. PubMed ID: 19781051 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose. Klepek YS; Geiger D; Stadler R; Klebl F; Landouar-Arsivaud L; Lemoine R; Hedrich R; Sauer N Plant Cell; 2005 Jan; 17(1):204-18. PubMed ID: 15598803 [TBL] [Abstract][Full Text] [Related]
16. VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. Vignault C; Vachaud M; Cakir B; Glissant D; Dédaldéchamp F; Büttner M; Atanassova R; Fleurat-Lessard P; Lemoine R; Delrot S J Exp Bot; 2005 May; 56(415):1409-18. PubMed ID: 15809282 [TBL] [Abstract][Full Text] [Related]
17. Copper transport and compartmentation in grape cells. Martins V; Hanana M; Blumwald E; Gerós H Plant Cell Physiol; 2012 Nov; 53(11):1866-80. PubMed ID: 22952251 [TBL] [Abstract][Full Text] [Related]
18. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries. Bindon KA; Dry PR; Loveys BR J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842 [TBL] [Abstract][Full Text] [Related]
19. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. Rienth M; Torregrosa L; Sarah G; Ardisson M; Brillouet JM; Romieu C BMC Plant Biol; 2016 Jul; 16(1):164. PubMed ID: 27439426 [TBL] [Abstract][Full Text] [Related]