These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Medullary respiratory neurones and control of laryngeal motoneurones during fictive eupnoea and cough in the cat. Baekey DM; Morris KF; Gestreau C; Li Z; Lindsey BG; Shannon R J Physiol; 2001 Jul; 534(Pt. 2):565-81. PubMed ID: 11454973 [TBL] [Abstract][Full Text] [Related]
5. Laryngeal respiratory motoneurones: morphology and electrophysiological evidence of separate sites for excitatory and inhibitory synaptic inputs. Barillot JC; Bianchi AL; Gogan P Neurosci Lett; 1984 Jun; 47(2):107-12. PubMed ID: 6087221 [TBL] [Abstract][Full Text] [Related]
6. The airway-related parasympathetic motoneurones in the ventrolateral medulla of newborn rats were dissociated anatomically and in functional control. Chen Y; Li M; Liu H; Wang J Exp Physiol; 2007 Jan; 92(1):99-108. PubMed ID: 17099059 [TBL] [Abstract][Full Text] [Related]
7. Intrinsic properties of rostral ventrolateral medulla presympathetic and bulbospinal respiratory neurons of juvenile rats are not affected by chronic intermittent hypoxia. Almado CE; Leão RM; Machado BH Exp Physiol; 2014 Jul; 99(7):937-50. PubMed ID: 24728679 [TBL] [Abstract][Full Text] [Related]
8. Chronic intermittent hypoxia alters genioglossus motor unit discharge patterns in the anaesthetized rat. Edge D; Bradford A; Jones JF; O'Halloran KD Adv Exp Med Biol; 2012; 758():295-300. PubMed ID: 23080175 [TBL] [Abstract][Full Text] [Related]
9. Dynamic changes in glottal resistance during exposure to severe hypoxia in neonatal rats in situ. Dutschmann M; Paton JF Pediatr Res; 2005 Aug; 58(2):193-8. PubMed ID: 16055938 [TBL] [Abstract][Full Text] [Related]
10. Heightened respiratory-parasympathetic coupling to airways in the spontaneously hypertensive rat. Moraes DJA; da Silva MP; de Souza DP; Felintro V; Paton JFR J Physiol; 2021 Jun; 599(12):3237-3252. PubMed ID: 33873234 [TBL] [Abstract][Full Text] [Related]
11. Respiratory control and sternohyoid muscle structure and function in aged male rats: decreased susceptibility to chronic intermittent hypoxia. Skelly JR; Edge D; Shortt CM; Jones JF; Bradford A; O'Halloran KD Respir Physiol Neurobiol; 2012 Mar; 180(2-3):175-82. PubMed ID: 22122888 [TBL] [Abstract][Full Text] [Related]
12. Respiratory Network Enhances the Sympathoinhibitory Component of Baroreflex of Rats Submitted to Chronic Intermittent Hypoxia. Moraes DJ; Bonagamba LG; da Silva MP; Mecawi AS; Antunes-Rodrigues J; Machado BH Hypertension; 2016 Oct; 68(4):1021-30. PubMed ID: 27480839 [TBL] [Abstract][Full Text] [Related]
13. Mild Chronic Intermittent Hypoxia in Wistar Rats Evokes Significant Cardiovascular Pathophysiology but No Overt Changes in Carotid Body-Mediated Respiratory Responses. Ray CJ; Dow B; Kumar P; Coney AM Adv Exp Med Biol; 2015; 860():245-54. PubMed ID: 26303488 [TBL] [Abstract][Full Text] [Related]
14. Inspiratory modulation of sympathetic activity is increased in female rats exposed to chronic intermittent hypoxia. Souza GM; Bonagamba LG; Amorim MR; Moraes DJ; Machado BH Exp Physiol; 2016 Nov; 101(11):1345-1358. PubMed ID: 27615665 [TBL] [Abstract][Full Text] [Related]
15. Cardiovascular and respiratory profiles during the sleep-wake cycle of rats previously submitted to chronic intermittent hypoxia. Bazilio DS; Bonagamba LGH; Moraes DJA; Machado BH Exp Physiol; 2019 Sep; 104(9):1408-1419. PubMed ID: 31099915 [TBL] [Abstract][Full Text] [Related]
16. Age protects from harmful effects produced by chronic intermittent hypoxia. Quintero M; Olea E; Conde SV; Obeso A; Gallego-Martin T; Gonzalez C; Monserrat JM; Gómez-Niño A; Yubero S; Agapito T J Physiol; 2016 Mar; 594(6):1773-90. PubMed ID: 26752660 [TBL] [Abstract][Full Text] [Related]
17. Changes in laryngeal motoneurone activity and in laryngeal calibre during the expiration reflex. Stránsky A; Tomori Z Physiol Bohemoslov; 1979; 28(4):365-73. PubMed ID: 158776 [TBL] [Abstract][Full Text] [Related]
18. Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats. de Britto AA; Moraes DJ J Physiol; 2017 Mar; 595(6):2043-2064. PubMed ID: 28004411 [TBL] [Abstract][Full Text] [Related]
19. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. Dutschmann M; Paton JF J Physiol; 2002 Sep; 543(Pt 2):643-53. PubMed ID: 12205196 [TBL] [Abstract][Full Text] [Related]
20. Central control of upper airway resistance regulating respiratory airflow in mammals. Paton JF; Dutschmann M J Anat; 2002 Oct; 201(4):319-23. PubMed ID: 12430956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]