These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 25433164)
1. Variability of permeability estimation from different protocols of subculture and transport experiments in cell monolayers. Oltra-Noguera D; Mangas-Sanjuan V; Centelles-Sangüesa A; Gonzalez-Garcia I; Sanchez-Castaño G; Gonzalez-Alvarez M; Casabo VG; Merino V; Gonzalez-Alvarez I; Bermejo M J Pharmacol Toxicol Methods; 2015; 71():21-32. PubMed ID: 25433164 [TBL] [Abstract][Full Text] [Related]
2. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. Jin X; Luong TL; Reese N; Gaona H; Collazo-Velez V; Vuong C; Potter B; Sousa JC; Olmeda R; Li Q; Xie L; Zhang J; Zhang P; Reichard G; Melendez V; Marcsisin SR; Pybus BS J Pharmacol Toxicol Methods; 2014; 70(2):188-94. PubMed ID: 25150934 [TBL] [Abstract][Full Text] [Related]
3. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Hellinger E; Veszelka S; Tóth AE; Walter F; Kittel A; Bakk ML; Tihanyi K; Háda V; Nakagawa S; Duy TD; Niwa M; Deli MA; Vastag M Eur J Pharm Biopharm; 2012 Oct; 82(2):340-51. PubMed ID: 22906709 [TBL] [Abstract][Full Text] [Related]
4. Variability in Caco-2 and MDCK cell-based intestinal permeability assays. Volpe DA J Pharm Sci; 2008 Feb; 97(2):712-25. PubMed ID: 17542022 [TBL] [Abstract][Full Text] [Related]
5. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability. Madgula VL; Avula B; Reddy V L N; Khan IA; Khan SI Planta Med; 2007 Apr; 73(4):330-5. PubMed ID: 17372866 [TBL] [Abstract][Full Text] [Related]
6. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539 [TBL] [Abstract][Full Text] [Related]
7. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. Irvine JD; Takahashi L; Lockhart K; Cheong J; Tolan JW; Selick HE; Grove JR J Pharm Sci; 1999 Jan; 88(1):28-33. PubMed ID: 9874698 [TBL] [Abstract][Full Text] [Related]
8. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers. de Souza J; Benet LZ; Huang Y; Storpirtis S J Pharm Sci; 2009 Nov; 98(11):4413-9. PubMed ID: 19472342 [TBL] [Abstract][Full Text] [Related]
9. Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Taub ME; Podila L; Ely D; Almeida I Drug Metab Dispos; 2005 Nov; 33(11):1679-87. PubMed ID: 16093365 [TBL] [Abstract][Full Text] [Related]
10. pH Dependent but not P-gp Dependent Bidirectional Transport Study of S-propranolol: The Importance of Passive Diffusion. Zheng Y; Benet LZ; Okochi H; Chen X Pharm Res; 2015 Aug; 32(8):2516-26. PubMed ID: 25690341 [TBL] [Abstract][Full Text] [Related]
11. Improvement of Workflows and Assay Reproducibility by The Introduction of "Assay-Ready" Culturing of MDCK Cells for Transport Studies. Muschong P; Jin L; Schejbal J; Mezler M; Weinheimer M Pharm Res; 2023 May; 40(5):1259-1270. PubMed ID: 36977814 [TBL] [Abstract][Full Text] [Related]
12. Predicting apparent passive permeability of Caco-2 and MDCK cell-monolayers: A mechanistic model. Bittermann K; Goss KU PLoS One; 2017; 12(12):e0190319. PubMed ID: 29281711 [TBL] [Abstract][Full Text] [Related]
13. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198 [TBL] [Abstract][Full Text] [Related]
14. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Troutman MD; Thakker DR Pharm Res; 2003 Aug; 20(8):1210-24. PubMed ID: 12948019 [TBL] [Abstract][Full Text] [Related]
15. Comparison of bidirectional cephalexin transport across MDCK and caco-2 cell monolayers: interactions with peptide transporters. Putnam WS; Pan L; Tsutsui K; Takahashi L; Benet LZ Pharm Res; 2002 Jan; 19(1):27-33. PubMed ID: 11837697 [TBL] [Abstract][Full Text] [Related]
16. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers. Ho NFH; Nielsen J; Peterson M; Burton PS J Pharm Sci; 2016 Feb; 105(2):904-914. PubMed ID: 26869435 [TBL] [Abstract][Full Text] [Related]
17. Multiparametric temporal analysis of the Caco-2/TC7 demonstrated functional and differentiated monolayers as early as 14 days of culture. Zeller P; Bricks T; Vidal G; Jacques S; Anton PM; Leclerc E Eur J Pharm Sci; 2015 May; 72():1-11. PubMed ID: 25725134 [TBL] [Abstract][Full Text] [Related]
18. Pitfalls in evaluating permeability experiments with Caco-2/MDCK cell monolayers. Ebert A; Dahley C; Goss KU Eur J Pharm Sci; 2024 Mar; 194():106699. PubMed ID: 38232636 [TBL] [Abstract][Full Text] [Related]
19. Predicting the intrinsic membrane permeability of Caco-2/MDCK cells by the solubility-diffusion model. Dahley C; Böckmann T; Ebert A; Goss KU Eur J Pharm Sci; 2024 Apr; 195():106720. PubMed ID: 38311258 [TBL] [Abstract][Full Text] [Related]
20. Cytotoxic 1,5-diaryl-3-oxo-1,5-pentadienes: an assessment and comparison of membrane permeability using Caco-2 and MDCK monolayers. Singh RS; Michel D; Das U; Dimmock JR; Alcorn J Bioorg Med Chem Lett; 2014 Nov; 24(22):5199-202. PubMed ID: 25442312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]