BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 25433213)

  • 1. A microscale mathematical model for metabolic symbiosis: Investigating the effects of metabolic inhibition on ATP turnover in tumors.
    Phipps C; Molavian H; Kohandel M
    J Theor Biol; 2015 Feb; 366():103-14. PubMed ID: 25433213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-lactate metabolic cooperation in cancer: insights from a spatial mathematical model and implications for targeted therapy.
    McGillen JB; Kelly CJ; Martínez-González A; Martin NK; Gaffney EA; Maini PK; Pérez-García VM
    J Theor Biol; 2014 Nov; 361():190-203. PubMed ID: 25264268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairment of aerobic glycolysis by inhibitors of lactic dehydrogenase hinders the growth of human hepatocellular carcinoma cell lines.
    Fiume L; Manerba M; Vettraino M; Di Stefano G
    Pharmacology; 2010; 86(3):157-62. PubMed ID: 20699632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic gradients as key regulators in zonation of tumor energy metabolism: a tissue-scale model-based study.
    König M; Holzhütter HG; Berndt N
    Biotechnol J; 2013 Sep; 8(9):1058-69. PubMed ID: 23589477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.
    Feron O
    Radiother Oncol; 2009 Sep; 92(3):329-33. PubMed ID: 19604589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells.
    Guppy M; Leedman P; Zu X; Russell V
    Biochem J; 2002 May; 364(Pt 1):309-15. PubMed ID: 11988105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models.
    Gatenby RA; Gawlinski ET
    Cancer Res; 2003 Jul; 63(14):3847-54. PubMed ID: 12873971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation.
    Parra-Bonilla G; Alvarez DF; Al-Mehdi AB; Alexeyev M; Stevens T
    Am J Physiol Lung Cell Mol Physiol; 2010 Oct; 299(4):L513-22. PubMed ID: 20675437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proinflammatory cytokines increase the rate of glycolysis and adenosine-5'-triphosphate turnover in cultured rat enterocytes.
    Berg S; Sappington PL; Guzik LJ; Delude RL; Fink MP
    Crit Care Med; 2003 Apr; 31(4):1203-12. PubMed ID: 12682494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ifosfamide metabolite chloroacetaldehyde inhibits cell proliferation and glucose metabolism without decreasing cellular ATP content in human breast cancer cells MCF-7.
    Knouzy B; Dubourg L; Baverel G; Michoudet C
    J Appl Toxicol; 2010 Apr; 30(3):204-11. PubMed ID: 19774546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic symbiosis between oxygenated and hypoxic tumour cells: An agent-based modelling study.
    Jayathilake PG; Victori P; Pavillet CE; Lee CH; Voukantsis D; Miar A; Arora A; Harris AL; Morten KJ; Buffa FM
    PLoS Comput Biol; 2024 Mar; 20(3):e1011944. PubMed ID: 38489376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction to the molecular basis of cancer metabolism and the Warburg effect.
    Ngo DC; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):819-23. PubMed ID: 25672512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate metabolism in human platelets in a low glucose medium under aerobic conditions.
    Niu X; Arthur P; Abas L; Whisson M; Guppy M
    Biochim Biophys Acta; 1996 Oct; 1291(2):97-106. PubMed ID: 8898869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
    Lunt SY; Vander Heiden MG
    Annu Rev Cell Dev Biol; 2011; 27():441-64. PubMed ID: 21985671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to Stochastic Temporal Variations in Intratumoral Blood Flow: The Warburg Effect as a Bet Hedging Strategy.
    Gravenmier CA; Siddique M; Gatenby RA
    Bull Math Biol; 2018 May; 80(5):954-970. PubMed ID: 28508297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic side of the Warburg effect: glycolytic intermediate storage as buffer for fluctuating glucose and O
    van Beek JHGM
    F1000Res; 2018; 7():1177. PubMed ID: 30755789
    [No Abstract]   [Full Text] [Related]  

  • 20. Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system.
    Goetze K; Fabian CG; Siebers A; Binz L; Faber D; Indraccolo S; Nardo G; Sattler UG; Mueller-Klieser W
    Cell Oncol (Dordr); 2015 Oct; 38(5):377-85. PubMed ID: 26288178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.