BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25433230)

  • 1. Identifying functional gene regulatory network phenotypes underlying single cell transcriptional variability.
    Park J; Ogunnaike B; Schwaber J; Vadigepalli R
    Prog Biophys Mol Biol; 2015 Jan; 117(1):87-98. PubMed ID: 25433230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inputs drive cell phenotype variability.
    Park J; Brureau A; Kernan K; Starks A; Gulati S; Ogunnaike B; Schwaber J; Vadigepalli R
    Genome Res; 2014 Jun; 24(6):930-41. PubMed ID: 24671852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network Inference from Single-Cell Transcriptomic Data.
    Todorov H; Cannoodt R; Saelens W; Saeys Y
    Methods Mol Biol; 2019; 1883():235-249. PubMed ID: 30547403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphogen interpretation: the transcriptional logic of neural tube patterning.
    Cohen M; Briscoe J; Blassberg R
    Curr Opin Genet Dev; 2013 Aug; 23(4):423-8. PubMed ID: 23725799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach?
    Ojeda SR; Lomniczi A; Mastronardi C; Heger S; Roth C; Parent AS; Matagne V; Mungenast AE
    Endocrinology; 2006 Mar; 147(3):1166-74. PubMed ID: 16373420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for inverse bifurcation of biochemical switches: inferring parameters from dose response curves.
    Otero-Muras I; Yordanov P; Stelling J
    BMC Syst Biol; 2014 Nov; 8():114. PubMed ID: 25409687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian Networks Predict Neuronal Transdifferentiation.
    Ainsworth RI; Ai R; Ding B; Li N; Zhang K; Wang W
    G3 (Bethesda); 2018 Jul; 8(7):2501-2511. PubMed ID: 29848620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A framework to find the logic backbone of a biological network.
    Maheshwari P; Albert R
    BMC Syst Biol; 2017 Dec; 11(1):122. PubMed ID: 29212542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of gene regulatory network dynamics using threshold logic.
    Gowda T; Vrudhula S; Kim S
    Ann N Y Acad Sci; 2009 Mar; 1158():71-81. PubMed ID: 19348633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to dynamic fuzzy modeling of genetic regulatory networks.
    Sun Y; Feng G; Cao J
    IEEE Trans Nanobioscience; 2010 Dec; 9(4):263-72. PubMed ID: 21041161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy logic based approaches for gene regulatory network inference.
    Raza K
    Artif Intell Med; 2019 Jun; 97():189-203. PubMed ID: 30573378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An estimation method for a cellular-state-specific gene regulatory network along tree-structured gene expression profiles.
    Araki R; Seno S; Takenaka Y; Matsuda H
    Gene; 2013 Apr; 518(1):17-25. PubMed ID: 23266644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated single cell data analysis reveals cell specific networks and novel coactivation markers.
    Ghazanfar S; Bisogni AJ; Ormerod JT; Lin DM; Yang JY
    BMC Syst Biol; 2016 Dec; 10(Suppl 5):127. PubMed ID: 28105940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development.
    Chen H; Guo J; Mishra SK; Robson P; Niranjan M; Zheng J
    Bioinformatics; 2015 Apr; 31(7):1060-6. PubMed ID: 25416748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach for modelling gene regulatory networks using fuzzy petri nets.
    Hamed RI; Ahson SI; Parveen R
    J Integr Bioinform; 2010 Feb; 7(1):. PubMed ID: 20134077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breeding and Genetics Symposium: building single nucleotide polymorphism-derived gene regulatory networks: Towards functional genomewide association studies.
    Reverter A; Fortes MR
    J Anim Sci; 2013 Feb; 91(2):530-6. PubMed ID: 23097399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information processing in the transcriptional regulatory network of yeast: functional robustness.
    Emmert-Streib F; Dehmer M
    BMC Syst Biol; 2009 Mar; 3():35. PubMed ID: 19298671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.