These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function. Vladimirov N; Wang C; Höckendorf B; Pujala A; Tanimoto M; Mu Y; Yang CT; Wittenbach JD; Freeman J; Preibisch S; Koyama M; Keller PJ; Ahrens MB Nat Methods; 2018 Dec; 15(12):1117-1125. PubMed ID: 30504888 [TBL] [Abstract][Full Text] [Related]
6. Systems neuroscience in Drosophila: Conceptual and technical advantages. Kazama H Neuroscience; 2015 Jun; 296():3-14. PubMed ID: 24973655 [TBL] [Abstract][Full Text] [Related]
7. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response. Naumann EA; Fitzgerald JE; Dunn TW; Rihel J; Sompolinsky H; Engert F Cell; 2016 Nov; 167(4):947-960.e20. PubMed ID: 27814522 [TBL] [Abstract][Full Text] [Related]
8. Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Kim CK; Miri A; Leung LC; Berndt A; Mourrain P; Tank DW; Burdine RD Front Neural Circuits; 2014; 8():138. PubMed ID: 25505384 [TBL] [Abstract][Full Text] [Related]
9. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lin X; Wang S; Yu X; Liu Z; Wang F; Li WT; Cheng SH; Dai Q; Shi P Lab Chip; 2015 Feb; 15(3):680-9. PubMed ID: 25406521 [TBL] [Abstract][Full Text] [Related]
10. Optogenetics in a transparent animal: circuit function in the larval zebrafish. Portugues R; Severi KE; Wyart C; Ahrens MB Curr Opin Neurobiol; 2013 Feb; 23(1):119-26. PubMed ID: 23246238 [TBL] [Abstract][Full Text] [Related]
11. In Vivo Whole-Cell Patch-Clamp Recording in the Zebrafish Brain. Zhang RW; Du JL Methods Mol Biol; 2016; 1451():281-91. PubMed ID: 27464815 [TBL] [Abstract][Full Text] [Related]
12. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish ( Cong L; Wang Z; Chai Y; Hang W; Shang C; Yang W; Bai L; Du J; Wang K; Wen Q Elife; 2017 Sep; 6():. PubMed ID: 28930070 [TBL] [Abstract][Full Text] [Related]
15. Zebrafish as an appealing model for optogenetic studies. Simmich J; Staykov E; Scott E Prog Brain Res; 2012; 196():145-62. PubMed ID: 22341325 [TBL] [Abstract][Full Text] [Related]
16. Integrative whole-brain neuroscience in larval zebrafish. Vanwalleghem GC; Ahrens MB; Scott EK Curr Opin Neurobiol; 2018 Jun; 50():136-145. PubMed ID: 29486425 [TBL] [Abstract][Full Text] [Related]
17. The zebrafish brain in research and teaching: a simple in vivo and in vitro model for the study of spontaneous neural activity. Vargas R; Jóhannesdóttir IT; Sigurgeirsson B; Thorsteinsson H; Karlsson KA Adv Physiol Educ; 2011 Jun; 35(2):188-96. PubMed ID: 21652504 [TBL] [Abstract][Full Text] [Related]
18. Zebrafish Behavior: Opportunities and Challenges. Orger MB; de Polavieja GG Annu Rev Neurosci; 2017 Jul; 40():125-147. PubMed ID: 28375767 [TBL] [Abstract][Full Text] [Related]
19. Genetic and optical targeting of neural circuits and behavior--zebrafish in the spotlight. Baier H; Scott EK Curr Opin Neurobiol; 2009 Oct; 19(5):553-60. PubMed ID: 19781935 [TBL] [Abstract][Full Text] [Related]
20. Of lasers, mutants, and see-through brains: functional neuroanatomy in zebrafish. Gahtan E; Baier H J Neurobiol; 2004 Apr; 59(1):147-61. PubMed ID: 15007833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]