BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25433513)

  • 1. Optimal Symmetric Multimodal Templates and Concatenated Random Forests for Supervised Brain Tumor Segmentation (Simplified) with ANTsR.
    Tustison NJ; Shrinidhi KL; Wintermark M; Durst CR; Kandel BM; Gee JC; Grossman MC; Avants BB
    Neuroinformatics; 2015 Apr; 13(2):209-25. PubMed ID: 25433513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization.
    Sauwen N; Acou M; Sima DM; Veraart J; Maes F; Himmelreich U; Achten E; Huffel SV
    BMC Med Imaging; 2017 May; 17(1):29. PubMed ID: 28472943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RFDCR: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields.
    Chen G; Li Q; Shi F; Rekik I; Pan Z
    Neuroimage; 2020 May; 211():116620. PubMed ID: 32057997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.
    Li Y; Jia F; Qin J
    Artif Intell Med; 2016 Oct; 73():1-13. PubMed ID: 27926377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images.
    Ghose S; Oliver A; Mitra J; Martí R; Lladó X; Freixenet J; Sidibé D; Vilanova JC; Comet J; Meriaudeau F
    Med Image Anal; 2013 Aug; 17(6):587-600. PubMed ID: 23666263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-specific semi-supervised learning for postoperative brain tumor segmentation.
    Meier R; Bauer S; Slotboom J; Wiest R; Reyes M
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):714-21. PubMed ID: 25333182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets.
    Jiang J; Wu Y; Huang M; Yang W; Chen W; Feng Q
    Comput Med Imaging Graph; 2013; 37(7-8):512-21. PubMed ID: 23816459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach.
    Njeh I; Sallemi L; Ayed IB; Chtourou K; Lehericy S; Galanaud D; Hamida AB
    Comput Med Imaging Graph; 2015 Mar; 40():108-19. PubMed ID: 25467804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concatenated and Connected Random Forests With Multiscale Patch Driven Active Contour Model for Automated Brain Tumor Segmentation of MR Images.
    Ma C; Luo G; Wang K
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1943-1954. PubMed ID: 29994627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning based brain tumour segmentation on limited data using local texture and abnormality.
    Bonte S; Goethals I; Van Holen R
    Comput Biol Med; 2018 Jul; 98():39-47. PubMed ID: 29763764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images.
    Karimaghaloo Z; Arnold DL; Arbel T
    Med Image Anal; 2016 Jan; 27():17-30. PubMed ID: 26211811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic white matter lesion segmentation using contrast enhanced FLAIR intensity and Markov Random Field.
    Roy PK; Bhuiyan A; Janke A; Desmond PM; Wong TY; Abhayaratna WP; Storey E; Ramamohanarao K
    Comput Med Imaging Graph; 2015 Oct; 45():102-11. PubMed ID: 26398564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmenting brain tumors using pseudo-conditional random fields.
    Lee CH; Wang S; Murtha A; Brown MR; Greiner R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):359-66. PubMed ID: 18979767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.
    Bricq S; Collet Ch; Armspach JP
    Med Image Anal; 2008 Dec; 12(6):639-52. PubMed ID: 18440268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
    Shah M; Xiao Y; Subbanna N; Francis S; Arnold DL; Collins DL; Arbel T
    Med Image Anal; 2011 Apr; 15(2):267-82. PubMed ID: 21233004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI.
    Eslami A; Karamalis A; Katouzian A; Navab N
    Med Image Anal; 2013 Feb; 17(2):236-53. PubMed ID: 23313331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised methods for detection and segmentation of tissues in clinical lumbar MRI.
    Ghosh S; Chaudhary V
    Comput Med Imaging Graph; 2014 Oct; 38(7):639-49. PubMed ID: 24746606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised variational model with statistical inference and its application in medical image segmentation.
    Li C; Wang X; Eberl S; Fulham M; Yin Y; Dagan Feng D
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):196-207. PubMed ID: 25099393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully automated framework for the analysis of myocardial first-pass perfusion MR images.
    Beache GM; Khalifa F; El-Baz A; Gimel'farb G
    Med Phys; 2014 Oct; 41(10):102305. PubMed ID: 25281975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI.
    Sauwen N; Sima DM; Van Cauter S; Veraart J; Leemans A; Maes F; Himmelreich U; Van Huffel S
    NMR Biomed; 2015 Dec; 28(12):1599-624. PubMed ID: 26458729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.