BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25434028)

  • 1. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species.
    Borzak CL; Potts BM; Davies NW; O'Reilly-Wapstra JM
    Ann Bot; 2015 Jan; 115(1):159-70. PubMed ID: 25434028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting ontogenetic trajectories for phenolic and terpenoid defences in Eucalyptus froggattii.
    Goodger JQ; Heskes AM; Woodrow IE
    Ann Bot; 2013 Aug; 112(4):651-9. PubMed ID: 23378522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensive sampling identifies previously unknown chemotypes, population divergence and biosynthetic connections among terpenoids in Eucalyptus tricarpa.
    Andrew RL; Keszei A; Foley WJ
    Phytochemistry; 2013 Oct; 94():148-58. PubMed ID: 23769022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae).
    Goodger JQD; Senaratne SL; Nicolle D; Woodrow IE
    Tree Physiol; 2018 Oct; 38(10):1451-1460. PubMed ID: 30032311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic stability of physiological responses to defoliation in a eucalypt and altered chemical defence in regrowth foliage.
    Borzak CL; Potts BM; Barry KM; Pinkard EA; O'Reilly-Wapstra JM
    Tree Physiol; 2017 Feb; 37(2):220-235. PubMed ID: 27881800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus.
    Gosney B; O'Reilly-Wapstra J; Forster L; Whiteley C; Potts B
    J Chem Ecol; 2017 May; 43(5):532-542. PubMed ID: 28478546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogenetic and temporal trajectories of chemical defence in a cyanogenic eucalypt.
    Goodger JQ; Choo TY; Woodrow IE
    Oecologia; 2007 Oct; 153(4):799-808. PubMed ID: 17605051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens.
    Henery ML; Moran GF; Wallis IR; Foley WJ
    New Phytol; 2007; 176(1):82-95. PubMed ID: 17696979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant defence as a complex and changing phenotype throughout ontogeny.
    Ochoa-López S; Villamil N; Zedillo-Avelleyra P; Boege K
    Ann Bot; 2015 Oct; 116(5):797-806. PubMed ID: 26220657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Transcriptome and Terpene Profile of Eucalyptus grandis Reveals Mechanisms of Defense Against the Insect Pest, Leptocybe invasa.
    Oates CN; Külheim C; Myburg AA; Slippers B; Naidoo S
    Plant Cell Physiol; 2015 Jul; 56(7):1418-28. PubMed ID: 25948810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foliar Terpene Chemotypes and Herbivory Determine Variation in Plant Volatile Emissions.
    Bustos-Segura C; Foley WJ
    J Chem Ecol; 2018 Jan; 44(1):51-61. PubMed ID: 29376212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of Genomic Prediction for Foliar Terpene Traits in
    Kainer D; Stone EA; Padovan A; Foley WJ; Külheim C
    G3 (Bethesda); 2018 Jul; 8(8):2573-2583. PubMed ID: 29891736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mosaic eucalypt trees suggest genetic control at a point that influences several metabolic pathways.
    Padovan A; Keszei A; Wallis IR; Foley WJ
    J Chem Ecol; 2012 Jul; 38(7):914-23. PubMed ID: 22661307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foliar mono- and sesquiterpene contents in relation to leaf economic spectrum in native and alien species in Oahu (Hawai'i).
    Sardans J; Llusià J; Niinemets U; Owen S; Peñuelas J
    J Chem Ecol; 2010 Feb; 36(2):210-26. PubMed ID: 20148357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A water availability gradient reveals the deficit level required to affect traits in potted juvenile Eucalyptus globulus.
    McKiernan AB; Potts BM; Hovenden MJ; Brodribb TJ; Davies NW; Rodemann T; McAdam SAM; O'Reilly-Wapstra JM
    Ann Bot; 2017 Apr; 119(6):1043-1052. PubMed ID: 28073772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terpenes associated with resistance against the gall wasp, Leptocybe invasa, in Eucalyptus grandis.
    Naidoo S; Christie N; Acosta JJ; Mphahlele MM; Payn KG; Myburg AA; Külheim C
    Plant Cell Environ; 2018 Aug; 41(8):1840-1851. PubMed ID: 29710389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad diversity in monoterpene-sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions.
    Bahmani K; Robinson A; Majumder S; LaVardera A; Dowell JA; Goolsby EW; Mason CM
    Am J Bot; 2022 Dec; 109(12):2051-2067. PubMed ID: 36317693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of intraspecific competition and substrate type on terpene emissions from some Mediterranean plant species.
    Ormeño E; Bousquet-Mélou A; Mévy JP; Greff S; Robles C; Bonin G; Fernandez C
    J Chem Ecol; 2007 Feb; 33(2):277-86. PubMed ID: 17195116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defences on larvae of a specialist herbivore.
    Henery ML; Wallis IR; Stone C; Foley WJ
    Oecologia; 2008 Jul; 156(4):847-59. PubMed ID: 18481100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk of herbivore attack and heritability of ontogenetic trajectories in plant defense.
    Ochoa-López S; Rebollo R; Barton KE; Fornoni J; Boege K
    Oecologia; 2018 Jun; 187(2):413-426. PubMed ID: 29392442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.