These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 25434357)
1. QSAR and 3D-QSAR models in the field of tubulin inhibitors as anticancer agents. Marzaro G; Chilin A Curr Top Med Chem; 2014; 14(20):2253-62. PubMed ID: 25434357 [TBL] [Abstract][Full Text] [Related]
2. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. Wang Y; Zhang H; Gigant B; Yu Y; Wu Y; Chen X; Lai Q; Yang Z; Chen Q; Yang J FEBS J; 2016 Jan; 283(1):102-11. PubMed ID: 26462166 [TBL] [Abstract][Full Text] [Related]
3. New ligands of the tubulin colchicine site based on X-ray structures. Álvarez R; Medarde M; Peláez R Curr Top Med Chem; 2014; 14(20):2231-52. PubMed ID: 25434358 [TBL] [Abstract][Full Text] [Related]
4. Identification of Essential 2D and 3D Chemical Features for Discovery of the Novel Tubulin Polymerization Inhibitors. Azimi F; Ghasemi JB; Saghaei L; Hassanzadeh F; Mahdavi M; Sadeghi-Aliabadi H; Scotti MT; Scotti L Curr Top Med Chem; 2019; 19(13):1092-1120. PubMed ID: 31109275 [TBL] [Abstract][Full Text] [Related]
5. Combined Molecular Docking, 3D-QSAR, and Pharmacophore Model: Design of Novel Tubulin Polymerization Inhibitors by Binding to Colchicine-binding Site. Li DD; Qin YJ; Zhang X; Yin Y; Zhu HL; Zhao LG Chem Biol Drug Des; 2015 Oct; 86(4):731-45. PubMed ID: 25711282 [TBL] [Abstract][Full Text] [Related]
6. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents. Ahmadi S; Habibpour E Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182 [TBL] [Abstract][Full Text] [Related]
7. QSAR based docking studies of marine algal anticancer compounds as inhibitors of protein kinase B (PKBβ). Davis GD; Vasanthi AH Eur J Pharm Sci; 2015 Aug; 76():110-8. PubMed ID: 25936945 [TBL] [Abstract][Full Text] [Related]
8. Design and synthesis of novel 5-(4-chlorophenyl)furan derivatives with inhibitory activity on tubulin polymerization. Moussa SA; A Osman EE; Eid NM; Abou-Seri SM; El Moghazy SM Future Med Chem; 2018 Aug; 10(16):1907-1924. PubMed ID: 29966433 [TBL] [Abstract][Full Text] [Related]
9. 3D-QSAR-Based Pharmacophore Modeling, Virtual Screening, and Molecular Docking Studies for Identification of Tubulin Inhibitors with Potential Anticancer Activity. Mirzaei S; Ghodsi R; Hadizadeh F; Sahebkar A Biomed Res Int; 2021; 2021():6480804. PubMed ID: 34485522 [TBL] [Abstract][Full Text] [Related]
10. Design, synthesis, biological evaluation, and 3D-QSAR analysis of podophyllotoxin-dioxazole combination as tubulin targeting anticancer agents. Wang ZZ; Sun WX; Wang X; Zhang YH; Qiu HY; Qi JL; Pang YJ; Lu GH; Wang XM; Yu FG; Yang YH Chem Biol Drug Des; 2017 Aug; 90(2):236-243. PubMed ID: 28079286 [TBL] [Abstract][Full Text] [Related]
11. QSAR Modeling of the Arylthioindole Class of Colchicine Polymerization Inhibitors as Anticancer Agents. Habibpour E; Ahmadi S Curr Comput Aided Drug Des; 2017; 13(2):143-159. PubMed ID: 28120704 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, biological evaluation and 3D-QSAR studies of novel 5-phenyl-1H-pyrazol cinnamamide derivatives as novel antitubulin agents. Wang SF; Yin Y; Zhang YL; Mi SW; Zhao MY; Lv PC; Wang BZ; Zhu HL Eur J Med Chem; 2015 Mar; 93():291-9. PubMed ID: 25703297 [TBL] [Abstract][Full Text] [Related]
13. Molecular modelling studies on Arylthioindoles as potent inhibitors of tubulin polymerization. Coluccia A; Sabbadin D; Brancale A Eur J Med Chem; 2011 Aug; 46(8):3519-25. PubMed ID: 21621885 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Wang YT; Qin YJ; Yang N; Zhang YL; Liu CH; Zhu HL Eur J Med Chem; 2015 Jun; 99():125-37. PubMed ID: 26070164 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Li L; Jiang S; Li X; Liu Y; Su J; Chen J Eur J Med Chem; 2018 May; 151():482-494. PubMed ID: 29649743 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, biological evaluation and molecular modeling of 1,3,4-thiadiazol-2-amide derivatives as novel antitubulin agents. Li YJ; Qin YJ; Makawana JA; Wang YT; Zhang YQ; Zhang YL; Yang MR; Jiang AQ; Zhu HL Bioorg Med Chem; 2014 Aug; 22(15):4312-22. PubMed ID: 24909678 [TBL] [Abstract][Full Text] [Related]
18. Structural insights into the design of indole derivatives as tubulin polymerization inhibitors. Li Y; Yang J; Niu L; Hu D; Li H; Chen L; Yu Y; Chen Q FEBS Lett; 2020 Jan; 594(1):199-204. PubMed ID: 31369682 [TBL] [Abstract][Full Text] [Related]
19. Optimization of substituted cinnamic acyl sulfonamide derivatives as tubulin polymerization inhibitors with anticancer activity. Luo Y; Zhou Y; Song Y; Chen G; Wang YX; Tian Y; Fan WW; Yang YS; Cheng T; Zhu HL Bioorg Med Chem Lett; 2018 Dec; 28(23-24):3634-3638. PubMed ID: 30389289 [TBL] [Abstract][Full Text] [Related]
20. Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the α-β interfacial site of human tubulin. Tyagi C; Gupta A; Goyal S; Dhanjal J; Grover A BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S3. PubMed ID: 25521775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]