BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 25434472)

  • 1. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.
    Klitzke S; Metreveli G; Peters A; Schaumann GE; Lang F
    Sci Total Environ; 2015 Dec; 535():54-60. PubMed ID: 25434472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging and soil organic matter content affect the fate of silver nanoparticles in soil.
    Coutris C; Joner EJ; Oughton DH
    Sci Total Environ; 2012 Mar; 420():327-33. PubMed ID: 22326137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental factors determining the trace-level sorption of silver and thallium to soils.
    Jacobson AR; McBride MB; Baveye P; Steenhuis TS
    Sci Total Environ; 2005 Jun; 345(1-3):191-205. PubMed ID: 15919539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of soil-aged silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Klitzke S; Lang F; Vogel HJ
    J Contam Hydrol; 2016 Dec; 195():31-39. PubMed ID: 27871667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties.
    Rahmatpour S; Shirvani M; Mosaddeghi MR; Bazarganipour M
    J Environ Manage; 2017 May; 193():136-145. PubMed ID: 28213297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6.
    Calder AJ; Dimkpa CO; McLean JE; Britt DW; Johnson W; Anderson AJ
    Sci Total Environ; 2012 Jul; 429():215-22. PubMed ID: 22591989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation of TiO
    Zehlike L; Peters A; Ellerbrock RH; Degenkolb L; Klitzke S
    Sci Total Environ; 2019 Oct; 688():288-298. PubMed ID: 31233912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of Ag and CeO
    Van Koetsem F; Woldetsadik GS; Folens K; Rinklebe J; Du Laing G
    Chemosphere; 2018 Jun; 200():471-480. PubMed ID: 29501884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils.
    Haham H; Oren A; Chefetz B
    Environ Sci Technol; 2012 Nov; 46(21):11870-7. PubMed ID: 23020667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption and dissolution of bare and coated silver nanoparticles in soil suspensions--Influence of soil and particle characteristics.
    Hedberg J; Oromieh AG; Kleja DB; Wallinder IO
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(9):891-900. PubMed ID: 26061202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexation of silver and dissolved organic matter in soil water extracts.
    Settimio L; McLaughlin MJ; Kirby JK; Langdon KA; Janik L; Smith S
    Environ Pollut; 2015 Apr; 199():174-84. PubMed ID: 25660071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disaggregation of silver nanoparticle homoaggregates in a river water matrix.
    Metreveli G; Philippe A; Schaumann GE
    Sci Total Environ; 2015 Dec; 535():35-44. PubMed ID: 25433382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of soil porewater properties on the fate and toxicity of silver nanoparticles to Caenorhabditis elegans.
    Schultz CL; Lahive E; Lawlor A; Crossley A; Puntes V; Unrine JM; Svendsen C; Spurgeon DJ
    Environ Toxicol Chem; 2018 Oct; 37(10):2609-2618. PubMed ID: 30003578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus and nitrogen sorption to soils in the presence of poultry litter-derived dissolved organic matter.
    Goyne KW; Jun HJ; Anderson SH; Motavalli PP
    J Environ Qual; 2008; 37(1):154-63. PubMed ID: 18178888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention of sterically and electrosterically stabilized silver nanoparticles in soils.
    Hoppe M; Mikutta R; Utermann J; Duijnisveld W; Guggenberger G
    Environ Sci Technol; 2014 Nov; 48(21):12628-35. PubMed ID: 25251386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remobilisation of silver and silver sulphide nanoparticles in soils.
    Navarro DA; Kirby JK; McLaughlin MJ; Waddington L; Kookana RS
    Environ Pollut; 2014 Oct; 193():102-110. PubMed ID: 25014017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment.
    Whitley AR; Levard C; Oostveen E; Bertsch PM; Matocha CJ; von der Kammer F; Unrine JM
    Environ Pollut; 2013 Nov; 182():141-9. PubMed ID: 23911623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.