These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 25434573)

  • 1. Empirical modelling of the dynamic response of fatigue during intermittent submaximal contractions of human forearm and calf muscles.
    Green S; Stefanovic B; Warman J; Askew CD
    J Electromyogr Kinesiol; 2015 Feb; 25(1):20-7. PubMed ID: 25434573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of calf muscle fatigue during submaximal exercise using transcranial magnetic stimulation versus transcutaneous motor nerve stimulation.
    Green S; Robinson E; Wallis E
    Eur J Appl Physiol; 2014 Jan; 114(1):113-21. PubMed ID: 24150785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity-dependent effect of ageing on fatigue during intermittent contractions of the human calf muscle in males and females.
    Reilly H; Egana M; Green S
    Eur J Appl Physiol; 2015 Sep; 115(9):1927-37. PubMed ID: 25911632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic response characteristics of hyperaemia in the human calf muscle: effect of exercise intensity and relation to electromyographic activity.
    Reeder EJ; Green S
    Eur J Appl Physiol; 2012 Dec; 112(12):3997-4013. PubMed ID: 22441829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular fatigue during repeated exhaustive submaximal static contractions of knee extensor muscles in endurance-trained, power-trained and untrained men.
    Pääsuke M; Ereline J; Gapeyeva H
    Acta Physiol Scand; 1999 Aug; 166(4):319-26. PubMed ID: 10468669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified version of the three-compartment model to predict fatigue during submaximal tasks with complex force-time histories.
    Sonne MW; Potvin JR
    Ergonomics; 2016; 59(1):85-98. PubMed ID: 26018327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle performance following fatigue induced by isotonic and quasi-isometric contractions of rat extensor digitorum longus and soleus muscles in vitro.
    Vedsted P; Larsen AH; Madsen K; Sjøgaard G
    Acta Physiol Scand; 2003 Jun; 178(2):175-86. PubMed ID: 12780392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-time course parameters and force fatigue model during an intermittent fatigue protocol in motorcycle race riders.
    Marina M; Rios M; Torrado P; Busquets A; Angulo-Barroso R
    Scand J Med Sci Sports; 2015 Jun; 25(3):406-16. PubMed ID: 24730983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors.
    Thompson BJ; Conchola EC; Stock MS
    Age (Dordr); 2015 Dec; 37(6):111. PubMed ID: 26534723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular Fatigue after Submaximal Intermittent Contractions in Motorcycle Riders.
    Torrado P; Cabib C; Morales M; Valls-Sole J; Marina M
    Int J Sports Med; 2015 Nov; 36(11):922-8. PubMed ID: 26140690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calf muscle strength in humans.
    Trappe SW; Trappe TA; Lee GA; Costill DL
    Int J Sports Med; 2001 Apr; 22(3):186-91. PubMed ID: 11354521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions.
    Martin PG; Rattey J
    Pflugers Arch; 2007 Sep; 454(6):957-69. PubMed ID: 17342531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood flow does not limit skeletal muscle force production during incremental isometric contractions.
    Wigmore DM; Propert K; Kent-Braun JA
    Eur J Appl Physiol; 2006 Mar; 96(4):370-8. PubMed ID: 16328195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related enhancement of fatigue resistance is evident in men during both isometric and dynamic tasks.
    Lanza IR; Russ DW; Kent-Braun JA
    J Appl Physiol (1985); 2004 Sep; 97(3):967-75. PubMed ID: 15145914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg.
    Credeur DP; Holwerda SW; Restaino RM; King PM; Crutcher KL; Laughlin MH; Padilla J; Fadel PJ
    J Appl Physiol (1985); 2015 Feb; 118(4):455-64. PubMed ID: 25539935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of an intermittent and continuous forearm muscles fatigue protocol with motorcycle riders and control group.
    Marina M; Torrado P; Busquets A; Ríos JG; Angulo-Barroso R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):84-93. PubMed ID: 22981327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cumulative effects of intermittent maximal contractions on voluntary activation deficits.
    Simpson M; Burke JR; Davis JM
    Int J Neurosci; 2004 Jun; 114(6):671-92. PubMed ID: 15204059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex differences in time to task failure and blood flow for an intermittent isometric fatiguing contraction.
    Hunter SK; Griffith EE; Schlachter KM; Kufahl TD
    Muscle Nerve; 2009 Jan; 39(1):42-53. PubMed ID: 19086076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man.
    Pethick J; Winter SL; Burnley M
    J Physiol; 2015 Apr; 593(8):2085-96. PubMed ID: 25664928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the forearm and calf blood flow response to thermal stress during dynamic exercise.
    Nishiyasu T; Shi X; Gillen CM; Mack GW; Nadel ER
    Med Sci Sports Exerc; 1992 Feb; 24(2):213-7. PubMed ID: 1549010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.