BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2543466)

  • 1. [Quantitative determination of the rate of superoxide radical formation in mitochondrial membranes by electron paramagnetic resonance].
    Rashba IuE; Vartanian LS; Baĭder LM; Krinitskaia LA
    Biofizika; 1989; 34(1):57-62. PubMed ID: 2543466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [NADH- and NADPH-dependent formation of superoxide radicals in liver nuclei].
    Vartanian LS; Gurevich SM
    Biokhimiia; 1989 Jun; 54(6):1020-5. PubMed ID: 2551393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles].
    Grigolava IV; Ksenzenko MIu; Konstantinob AA; Tikhonov AN; Kerimov TM
    Biokhimiia; 1980 Jan; 45(1):75-82. PubMed ID: 6260236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Generation of superoxide radicals by the mitochondrial respiratory chain of isolated cardiomyocytes].
    Kashkarov KP; Vasil'eva EV; Ruuge EK
    Biokhimiia; 1994 Jun; 59(6):813-8. PubMed ID: 8075245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutase and superoxide radical in Morris hepatomas.
    Bize IB; Oberley LW; Morris HP
    Cancer Res; 1980 Oct; 40(10):3686-93. PubMed ID: 6254638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium(V) is produced upon reduction of chromate by mitochondrial electron transport chain complexes.
    Rossi SC; Wetterhahn KE
    Carcinogenesis; 1989 May; 10(5):913-20. PubMed ID: 2539917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Formation of superoxide radicals in the mitochondria of skeletal muscle].
    Koshkin VV
    Biokhimiia; 1983 Dec; 48(12):1965-9. PubMed ID: 6322865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Generation of superoxide radicals by heart mitochondria: study by spin trapping under continuous oxygenation].
    Korkisha OV; Ruuge EK
    Biofizika; 2000; 45(4):695-9. PubMed ID: 11040979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of superoxide anion generation in intact mitochondria in the presence of lucigenin and cyanide.
    Yurkov IS; Kruglov AG; Evtodienko YV; Yaguzhinsky LS
    Biochemistry (Mosc); 2003 Dec; 68(12):1349-59. PubMed ID: 14756632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species produced by liver mitochondria of rats in sepsis.
    Taylor DE; Ghio AJ; Piantadosi CA
    Arch Biochem Biophys; 1995 Jan; 316(1):70-6. PubMed ID: 7840680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Superoxide formation and lipid peroxidation by the mitochondrial electron-transfer chain].
    Takeshige K
    Rinsho Shinkeigaku; 1994 Dec; 34(12):1269-71. PubMed ID: 7774132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: an EPR study.
    Massa EM; Giulivi C
    Free Radic Biol Med; 1993 May; 14(5):559-65. PubMed ID: 8394271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electrogenic function of submitochondrial particles at the water-octane interphases].
    Boguslavskiĭ LI; Volkov AG; Kondrashin AA; Metel'skiĭ ST; Iasaĭtis AA
    Biokhimiia; 1976 Jul; 41(6):1047-51. PubMed ID: 194625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The mechanism of action of a synthetic derivative of 1,4-naphthoquinone on the respiratory chain of liver and heart mitochondria].
    Levin GS; Tremasova GIa; Kostova SV; Dregeris IaIa
    Biokhimiia; 1989 Oct; 54(10):1630-7. PubMed ID: 2574998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Stimulation by quinones of cyanide-resistant respiration in rat liver and heart mitochondria].
    Kolesova GM; Kapitanova NG; Iaguzhinskiĭ LS
    Biokhimiia; 1987 May; 52(5):715-9. PubMed ID: 3593796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.
    Moreno SN; Mason RP; Docampo R
    J Biol Chem; 1984 Dec; 259(23):14609-16. PubMed ID: 6094566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tocopheramine succinate and tocopheryl succinate: mechanism of mitochondrial inhibition and superoxide radical production.
    Gruber J; Staniek K; Krewenka C; Moldzio R; Patel A; Böhmdorfer S; Rosenau T; Gille L
    Bioorg Med Chem; 2014 Jan; 22(2):684-91. PubMed ID: 24393721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.