These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25434824)

  • 21. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors.
    Hayakawa M; Onoe H; Nagai KH; Takinoue M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters.
    Zhao G; Sanchez S; Schmidt OG; Pumera M
    Nanoscale; 2013 Apr; 5(7):2909-14. PubMed ID: 23450281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.
    Ahmed S; Wang W; Bai L; Gentekos DT; Hoyos M; Mallouk TE
    ACS Nano; 2016 Apr; 10(4):4763-9. PubMed ID: 26991933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selectively manipulable acoustic-powered microswimmers.
    Ahmed D; Lu M; Nourhani A; Lammert PE; Stratton Z; Muddana HS; Crespi VH; Huang TJ
    Sci Rep; 2015 May; 5():9744. PubMed ID: 25993314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion analysis of self-propelled Pt-silica particles in hydrogen peroxide solutions.
    Ke H; Ye S; Carroll RL; Showalter K
    J Phys Chem A; 2010 May; 114(17):5462-7. PubMed ID: 20387839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ruthenium-catalyzed oxidative cyanation of tertiary amines with hydrogen peroxide and sodium cyanide.
    Murahashi S; Komiya N; Terai H
    Angew Chem Int Ed Engl; 2005 Oct; 44(42):6931-3. PubMed ID: 16193527
    [No Abstract]   [Full Text] [Related]  

  • 27. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold.
    Zhang J; Ma H; Zhang D; Liu P; Tian F; Ding Y
    Phys Chem Chem Phys; 2008 Jun; 10(22):3250-5. PubMed ID: 18500402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Floating synthesis with enhanced catalytic performance via acoustic levitation processing.
    Zheng Y; Zhuang Q; Ruan Y; Zhu G; Xie W; Jiang Y; Li H; Wei B
    Ultrason Sonochem; 2022 Jun; 87():106051. PubMed ID: 35660276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors.
    Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG
    Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions.
    Catchmark JM; Subramanian S; Sen A
    Small; 2005 Feb; 1(2):202-6. PubMed ID: 17193430
    [No Abstract]   [Full Text] [Related]  

  • 31. Multi-fuel driven Janus micromotors.
    Gao W; D'Agostino M; Garcia-Gradilla V; Orozco J; Wang J
    Small; 2013 Feb; 9(3):467-71. PubMed ID: 23055445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving catalase-based propelled motor endurance by enzyme encapsulation.
    Simmchen J; Baeza A; Ruiz-Molina D; Vallet-Regí M
    Nanoscale; 2014 Aug; 6(15):8907-13. PubMed ID: 24964766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
    Chen C; Tang S; Teymourian H; Karshalev E; Zhang F; Li J; Mou F; Liang Y; Guan J; Wang J
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8110-8114. PubMed ID: 29737003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial Swimmers Propelled by Acoustically Activated Flagella.
    Ahmed D; Baasch T; Jang B; Pane S; Dual J; Nelson BJ
    Nano Lett; 2016 Aug; 16(8):4968-74. PubMed ID: 27459382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First-principles simulations of hydrogen peroxide formation catalyzed by small neutral gold clusters.
    Kacprzak KA; Akola J; Häkkinen H
    Phys Chem Chem Phys; 2009 Aug; 11(30):6359-64. PubMed ID: 19809667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient electrochemical responses on single crystalline ruthenium-vanadium mixed metal oxide nanowires.
    Chun SH; Choi HA; Kang M; Koh M; Lee NS; Lee SC; Lee M; Lee Y; Lee C; Kim MH
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8401-6. PubMed ID: 23977880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motion-based, high-yielding, and fast separation of different charged organics in water.
    Xuan M; Lin X; Shao J; Dai L; He Q
    Chemphyschem; 2015 Jan; 16(1):147-51. PubMed ID: 25413002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-driven micromotors.
    Gao W; Pei A; Wang J
    ACS Nano; 2012 Sep; 6(9):8432-8. PubMed ID: 22891973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct evidence for catalase activity of [Ru(V)(edta)(O)](-).
    Chatterjee D; Jaiswal N; Franke A; van Eldik R
    Chem Commun (Camb); 2014 Dec; 50(93):14562-5. PubMed ID: 25307989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.
    Li J; Huang G; Ye M; Li M; Liu R; Mei Y
    Nanoscale; 2011 Dec; 3(12):5083-9. PubMed ID: 22057905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.