These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25434843)

  • 41. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite.
    Amjadi M; Pichitpajongkit A; Lee S; Ryu S; Park I
    ACS Nano; 2014 May; 8(5):5154-63. PubMed ID: 24749972
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assembling surface mounted components on ink-jet printed double sided paper circuit board.
    Andersson HA; Manuilskiy A; Haller S; Hummelgård M; Sidén J; Hummelgård C; Olin H; Nilsson HE
    Nanotechnology; 2014 Mar; 25(9):094002. PubMed ID: 24521824
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Soft elastomeric composite materials with skin-inspired mechanical properties for stretchable electronic circuits.
    Zhang K; Kong S; Li Y; Lu M; Kong D
    Lab Chip; 2019 Aug; 19(16):2709-2717. PubMed ID: 31334739
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D printed microstructures for flexible electronic devices.
    Liu Y; Xu Y; Avila R; Liu C; Xie Z; Wang L; Yu X
    Nanotechnology; 2019 Oct; 30(41):414001. PubMed ID: 31247596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring.
    Kim I; Woo K; Zhong Z; Ko P; Jang Y; Jung M; Jo J; Kwon S; Lee SH; Lee S; Youn H; Moon J
    Nanoscale; 2018 May; 10(17):7890-7897. PubMed ID: 29560480
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EGaIn-Assisted Room-Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet-Printed, Thin-Film Electronics.
    Tavakoli M; Malakooti MH; Paisana H; Ohm Y; Marques DG; Alhais Lopes P; Piedade AP; de Almeida AT; Majidi C
    Adv Mater; 2018 May; ():e1801852. PubMed ID: 29845674
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films.
    Yu Y; Luo S; Sun L; Wu Y; Jiang K; Li Q; Wang J; Fan S
    Nanoscale; 2015 Jun; 7(22):10178-85. PubMed ID: 25985762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Roll to plate printed stretchable silver electrode using single walled carbon nanotube on elastomeric substrate.
    Jung M; Noh J; Kim J; Kim D; Cho G
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5620-3. PubMed ID: 23882805
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stretchable Silver Nanowire-Elastomer Composite Microelectrodes with Tailored Electrical Properties.
    Martinez V; Stauffer F; Adagunodo MO; Forro C; Vörös J; Larmagnac A
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13467-75. PubMed ID: 26068389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabric Circuit Board Connecting to Flexible Sensors or Rigid Components for Wearable Applications.
    Li Q; Ran Z; Ding X; Wang X
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reliable interfaces for EGaIn multi-layer stretchable circuits and microelectronics.
    Green Marques D; Alhais Lopes P; T de Almeida A; Majidi C; Tavakoli M
    Lab Chip; 2019 Feb; 19(5):897-906. PubMed ID: 30724280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications.
    Wang T; Wang R; Cheng Y; Sun J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9297-304. PubMed ID: 26895474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Moldable and Transferrable Conductive Nanocomposites for Epidermal Electronics.
    Namkoong M; Guo H; Rahman MS; Wang D; Pfeil CJ; Hager S; Tian L
    Npj Flex Electron; 2022; 6():. PubMed ID: 35996439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Method to Pattern Silver Nanowires Directly on Wafer-Scale PDMS Substrate and Its Applications.
    Chou N; Kim Y; Kim S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6269-76. PubMed ID: 26882099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stretchable Electronics Based on Laser Structured, Vapor Phase Polymerized PEDOT/Tosylate.
    Aqrawe Z; Boehler C; Bansal M; O'Carroll SJ; Asplund M; Svirskis D
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722387
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits.
    Hu M; Cai X; Guo Q; Bian B; Zhang T; Yang J
    ACS Nano; 2016 Jan; 10(1):396-404. PubMed ID: 26624508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Stretchable and Waterproof Electroluminescence Device Based on Superstable Stretchable Transparent Electrode.
    You B; Kim Y; Ju BK; Kim JW
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5486-5494. PubMed ID: 28102663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors.
    Kim HJ; Sim K; Thukral A; Yu C
    Sci Adv; 2017 Sep; 3(9):e1701114. PubMed ID: 28913428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing.
    Liang Guo ; Guvanasen GS; Xi Liu ; Tuthill C; Nichols TR; DeWeerth SP
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):1-10. PubMed ID: 23853274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.
    Cheng Y; Wang R; Sun J; Gao L
    ACS Nano; 2015 Apr; 9(4):3887-95. PubMed ID: 25808756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.