These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25434979)

  • 1. Precise quantitative addition of multiple reagents into droplets in sequence using glass fiber-induced droplet coalescence.
    Li C; Xu J; Ma B
    Analyst; 2015 Feb; 140(3):701-5. PubMed ID: 25434979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel surgery-like strategy for droplet coalescence in microchannels.
    Deng NN; Sun SX; Wang W; Ju XJ; Xie R; Chu LY
    Lab Chip; 2013 Sep; 13(18):3653-7. PubMed ID: 23877051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective droplet coalescence using microfluidic systems.
    Mazutis L; Griffiths AD
    Lab Chip; 2012 Apr; 12(10):1800-6. PubMed ID: 22453914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic selective concentration of microdroplet contents by spontaneous emulsification.
    Fukuyama M; Hibara A
    Anal Chem; 2015 Apr; 87(7):3562-5. PubMed ID: 25760305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically induced coalescence in droplet-based microfluidics.
    Akartuna I; Aubrecht DM; Kodger TE; Weitz DA
    Lab Chip; 2015 Feb; 15(4):1140-4. PubMed ID: 25537080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosity based droplet size controlling in negative pressure driven droplets generator for large-scale particle synthesis.
    Li H; Xue Y; Xu M; Zhao W; Zong C; Liu X; Zhang Q
    Electrophoresis; 2017 Jul; 38(13-14):1736-1742. PubMed ID: 28432689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing organoclay stabilized Pickering emulsions.
    Cui Y; Threlfall M; van Duijneveldt JS
    J Colloid Interface Sci; 2011 Apr; 356(2):665-71. PubMed ID: 21324469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microparticle sampling by electrowetting-actuated droplet sweeping.
    Zhao Y; Cho SK
    Lab Chip; 2006 Jan; 6(1):137-44. PubMed ID: 16372081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Triggered Coalescence and Reactivity of Droplet Fibers.
    Zhao J; Pan Z; Snyder D; Stone HA; Emrick T
    J Am Chem Soc; 2021 Apr; 143(14):5558-5564. PubMed ID: 33793226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.
    Dorvee JR; Derfus AM; Bhatia SN; Sailor MJ
    Nat Mater; 2004 Dec; 3(12):896-9. PubMed ID: 15531887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microdroplet-based shift register.
    Zagnoni M; Cooper JM
    Lab Chip; 2010 Nov; 10(22):3069-73. PubMed ID: 20856984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of UV-patternable hydrophobization of micro- and nanofluidic networks.
    Arayanarakool R; Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2011 Dec; 11(24):4260-6. PubMed ID: 22064947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.