These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma. Feng N; Wu P; Li Q; Mei Y; Shi S; Yu J; Xu J; Liu Y; Wang Y J Drug Target; 2008 Jul; 16(6):479-85. PubMed ID: 18604660 [TBL] [Abstract][Full Text] [Related]
3. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Chang L; Deng L; Wang W; Lv Z; Hu F; Dong A; Zhang J Biomacromolecules; 2012 Oct; 13(10):3301-10. PubMed ID: 22931197 [TBL] [Abstract][Full Text] [Related]
4. Toward immunosuppressive effects on liver transplantation in rat model: tacrolimus loaded poly(ethylene glycol)-poly(D,L-lactide) nanoparticle with longer survival time. Xu W; Ling P; Zhang T Int J Pharm; 2014 Jan; 460(1-2):173-80. PubMed ID: 24172796 [TBL] [Abstract][Full Text] [Related]
5. Folate-decorated PEG-PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery. Wei K; Peng X; Zou F Int J Pharm; 2014 Apr; 464(1-2):225-33. PubMed ID: 24463073 [TBL] [Abstract][Full Text] [Related]
6. Rapamycin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles: preparation, characterization and potential application in corneal transplantation. Zhang Z; Xu L; Chen H; Li X J Pharm Pharmacol; 2014 Apr; 66(4):557-63. PubMed ID: 24635557 [TBL] [Abstract][Full Text] [Related]
7. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Parikh T; Bommana MM; Squillante E Eur J Pharm Biopharm; 2010 Mar; 74(3):442-50. PubMed ID: 19941957 [TBL] [Abstract][Full Text] [Related]
9. Oral delivery of indinavir using mPEG-PCL nanoparticles: preparation, optimization, cellular uptake, transport and pharmacokinetic evaluation. Kurd M; Sadegh Malvajerd S; Rezaee S; Hamidi M; Derakhshandeh K Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):2123-2133. PubMed ID: 31155961 [No Abstract] [Full Text] [Related]
10. Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Feng R; Song Z; Zhai G Int J Nanomedicine; 2012; 7():4089-98. PubMed ID: 22888245 [TBL] [Abstract][Full Text] [Related]
11. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Bagre AP; Jain K; Jain NK Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363 [TBL] [Abstract][Full Text] [Related]
12. Diclofenac/biodegradable polymer micelles for ocular applications. Li X; Zhang Z; Li J; Sun S; Weng Y; Chen H Nanoscale; 2012 Aug; 4(15):4667-73. PubMed ID: 22732776 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of 5-fluorouracil-loaded PLLA-PEG/PEG nanoparticles by a novel supercritical CO2 technique. Zhang C; Li G; Wang Y; Cui F; Zhang J; Huang Q Int J Pharm; 2012 Oct; 436(1-2):272-81. PubMed ID: 22721846 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Nanoencapsulation of Sepiapterin within PEG-PCL Nanoparticles by Complexation with Triacetyl-Beta Cyclodextrin. Kuplennik N; Sosnik A Molecules; 2019 Jul; 24(15):. PubMed ID: 31357400 [TBL] [Abstract][Full Text] [Related]
15. Poly(ester anhydride)/mPEG amphiphilic block co-polymer nanoparticles as delivery devices for paclitaxel. Liang Y; Xiao L; Li Y; Zhai Y; Xie C; Deng L; Dong A J Biomater Sci Polym Ed; 2011; 22(4-6):701-15. PubMed ID: 20566053 [TBL] [Abstract][Full Text] [Related]
16. Protein delivery nanosystem of six-arm copolymer poly(ε-caprolactone)-poly(ethylene glycol) for long-term sustained release. Duan J; Liu C; Liang X; Li X; Chen Y; Chen Z; Wang X; Kong D; Li Y; Yang J Int J Nanomedicine; 2018; 13():2743-2754. PubMed ID: 29780245 [TBL] [Abstract][Full Text] [Related]
17. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Liu J; Zeng Y; Shi S; Xu L; Zhang H; Pathak JL; Pan Y Int J Nanomedicine; 2017; 12():3561-3575. PubMed ID: 28507436 [TBL] [Abstract][Full Text] [Related]
18. Development of a novel biocompatible poly(ethylene glycol)-block-poly(γ-cholesterol-L-glutamate) as hydrophobic drug carrier. Ma Q; Li B; Yu Y; Zhang Y; Wu Y; Ren W; Zheng Y; He J; Xie Y; Song X; He G Int J Pharm; 2013 Mar; 445(1-2):88-92. PubMed ID: 23376505 [TBL] [Abstract][Full Text] [Related]
19. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Mady FM; Shaker MA Int J Nanomedicine; 2017; 12():7405-7417. PubMed ID: 29066891 [TBL] [Abstract][Full Text] [Related]
20. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery. Liu P; Yu H; Sun Y; Zhu M; Duan Y Biomaterials; 2012 Jun; 33(17):4403-12. PubMed ID: 22436800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]