These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 2543510)
1. The in vitro metabolites of 2,4,6-trichlorophenol and their DNA strand breaking properties. Juhl U; Blum K; Witte I Chem Biol Interact; 1989; 69(4):333-44. PubMed ID: 2543510 [TBL] [Abstract][Full Text] [Related]
2. The induction of DNA strand breaks and formation of semiquinone radicals by metabolites of 2,4,5-trichlorophenol. Juhl U; Blum JK; Butte W; Witte I Free Radic Res Commun; 1991; 11(6):295-305. PubMed ID: 2071027 [TBL] [Abstract][Full Text] [Related]
3. Copper redox-dependent activation of 2-tert-butyl(1,4)hydroquinone: formation of reactive oxygen species and induction of oxidative DNA damage in isolated DNA and cultured rat hepatocytes. Li Y; Seacat A; Kuppusamy P; Zweier JL; Yager JD; Trush MA Mutat Res; 2002 Jul; 518(2):123-33. PubMed ID: 12113763 [TBL] [Abstract][Full Text] [Related]
4. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweir JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080 [TBL] [Abstract][Full Text] [Related]
5. Free radical formation and DNA strand breakage during metabolism of diaziquone by NAD(P)H quinone-acceptor oxidoreductase (DT-diaphorase) and NADPH cytochrome c reductase. Fisher GR; Gutierrez PL Free Radic Biol Med; 1991; 11(6):597-607. PubMed ID: 1663902 [TBL] [Abstract][Full Text] [Related]
6. Genotoxicity of the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP): formation of 2-hydroxamino-PhIP, a directly acting genotoxic metabolite. Holme JA; Wallin H; Brunborg G; Søderlund EJ; Hongslo JK; Alexander J Carcinogenesis; 1989 Aug; 10(8):1389-96. PubMed ID: 2665964 [TBL] [Abstract][Full Text] [Related]
7. Formation of pentachlorophenol as the major product of microsomal oxidation of hexachlorobenzene. van Ommen B; van Bladeren PJ; Temmink JH; Müller F Biochem Biophys Res Commun; 1985 Jan; 126(1):25-32. PubMed ID: 3970692 [TBL] [Abstract][Full Text] [Related]
8. Interaction of N,N',N''-triethylenethiophosphoramide and N,N',N''-triethylenephosphoramide with cellular DNA. Cohen NA; Egorin MJ; Snyder SW; Ashar B; Wietharn BE; Pan SS; Ross DD; Hilton J Cancer Res; 1991 Aug; 51(16):4360-6. PubMed ID: 1714342 [TBL] [Abstract][Full Text] [Related]
9. The role of hydroxyl radicals in tetrachlorohydroquinone induced DNA strand break formation in PM2 DNA and human fibroblasts. Carstens CP; Blum JK; Witte I Chem Biol Interact; 1990; 74(3):305-14. PubMed ID: 2161290 [TBL] [Abstract][Full Text] [Related]
10. Spin trapping of free radical species produced during the microsomal metabolism of ethanol. Albano E; Tomasi A; Goria-Gatti L; Dianzani MU Chem Biol Interact; 1988; 65(3):223-34. PubMed ID: 2837334 [TBL] [Abstract][Full Text] [Related]
11. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968 [TBL] [Abstract][Full Text] [Related]
12. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969 [TBL] [Abstract][Full Text] [Related]
13. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids. Wangpradit O; Rahaman A; Mariappan SV; Buettner GR; Robertson LW; Luthe G Environ Sci Pollut Res Int; 2016 Feb; 23(3):2138-47. PubMed ID: 26396011 [TBL] [Abstract][Full Text] [Related]
14. Metabolic denitrosation of diphenylnitrosamine: a possible bioactivation pathway. Appel KE; Görsdorf S; Scheper T; Ruf HH; Rühl CS; Hildebrandt AG J Cancer Res Clin Oncol; 1987; 113(2):131-6. PubMed ID: 3031080 [TBL] [Abstract][Full Text] [Related]
15. Oxidative microsomal metabolism of 1-nitropyrene and DNA-binding of oxidized metabolites following nitroreduction. Djurić Z; Fifer EK; Howard PC; Beland FA Carcinogenesis; 1986 Jul; 7(7):1073-9. PubMed ID: 3755082 [TBL] [Abstract][Full Text] [Related]
16. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals, Flowers L; Ohnishi ST; Penning TM Biochemistry; 1997 Jul; 36(28):8640-8. PubMed ID: 9214311 [TBL] [Abstract][Full Text] [Related]
17. Reactive oxygen species generated from the reaction of copper(II) complexes with biological reductants cause DNA strand scission. Ueda J; Takai M; Shimazu Y; Ozawa T Arch Biochem Biophys; 1998 Sep; 357(2):231-9. PubMed ID: 9735163 [TBL] [Abstract][Full Text] [Related]
18. Formation of the semiquinone anion radical from tert-butylquinone and from tert-butylhydroquinone in rat liver microsomes. Bergmann B; Dohrmann JK; Kahl R Toxicology; 1992 Sep; 74(2-3):127-33. PubMed ID: 1325685 [TBL] [Abstract][Full Text] [Related]
19. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes. Sawahata T; Neal RA Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203 [TBL] [Abstract][Full Text] [Related]
20. Free radical activation of monomethyl and dimethyl hydrazines in isolated hepatocytes and liver microsomes. Albano E; Tomasi A; Goria-Gatti L; Iannone A Free Radic Biol Med; 1989; 6(1):3-8. PubMed ID: 2536341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]