These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 25435166)
1. Reinterpretation of the expected electronic density of states of semiconductor nanowires. Wang J; Luo JW; Zhang L; Zunger A Nano Lett; 2015 Jan; 15(1):88-95. PubMed ID: 25435166 [TBL] [Abstract][Full Text] [Related]
2. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires. Rosini M; Magri R ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868 [TBL] [Abstract][Full Text] [Related]
3. Magnetic states in prismatic core multishell nanowires. Ferrari G; Goldoni G; Bertoni A; Cuoghi G; Molinari E Nano Lett; 2009 Apr; 9(4):1631-5. PubMed ID: 19320440 [TBL] [Abstract][Full Text] [Related]
11. Controlled polytypic and twin-plane superlattices in iii-v nanowires. Caroff P; Dick KA; Johansson J; Messing ME; Deppert K; Samuelson L Nat Nanotechnol; 2009 Jan; 4(1):50-5. PubMed ID: 19119283 [TBL] [Abstract][Full Text] [Related]
12. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures. Funk S; Royo M; Zardo I; Rudolph D; Morkötter S; Mayer B; Becker J; Bechtold A; Matich S; Döblinger M; Bichler M; Koblmüller G; Finley JJ; Bertoni A; Goldoni G; Abstreiter G Nano Lett; 2013; 13(12):6189-96. PubMed ID: 24274328 [TBL] [Abstract][Full Text] [Related]
13. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy. Wang J; Li Q; Egerton RF Micron; 2007; 38(4):346-53. PubMed ID: 16938457 [TBL] [Abstract][Full Text] [Related]
15. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy. So H; Pan D; Li L; Zhao J Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450 [TBL] [Abstract][Full Text] [Related]
16. Optical far-field extinction of a single GaAs nanowire towards in situ size control of aerotaxy nanowire growth. Chen Y; Anttu N; Sivakumar S; Gompou E; Magnusson MH Nanotechnology; 2020 Mar; 31(13):134001. PubMed ID: 31917683 [TBL] [Abstract][Full Text] [Related]
17. The theoretical direct-band-gap optical gain of Germanium nanowires. Xiong W; Wang JW; Fan WJ; Song ZG; Tan CS Sci Rep; 2020 Jan; 10(1):32. PubMed ID: 31913342 [TBL] [Abstract][Full Text] [Related]
18. Quantized Exciton Motion and Fine Energy-Level Structure of a Single Perovskite Nanowire. Tang Y; Yin C; Jing Q; Zhang C; Yu ZG; Lu Z; Xiao M; Wang X Nano Lett; 2022 Apr; 22(7):2907-2914. PubMed ID: 35362973 [TBL] [Abstract][Full Text] [Related]
19. Direct measurement of band edge discontinuity in individual core-shell nanowires by photocurrent spectroscopy. Chen G; Sun G; Ding YJ; Prete P; Miccoli I; Lovergine N; Shtrikman H; Kung P; Livneh T; Spanier JE Nano Lett; 2013 Sep; 13(9):4152-7. PubMed ID: 23937245 [TBL] [Abstract][Full Text] [Related]
20. Understanding quantum confinement in nanowires: basics, applications and possible laws. Mohammad SN J Phys Condens Matter; 2014 Oct; 26(42):423202. PubMed ID: 25245123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]