These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25435166)

  • 1. Reinterpretation of the expected electronic density of states of semiconductor nanowires.
    Wang J; Luo JW; Zhang L; Zunger A
    Nano Lett; 2015 Jan; 15(1):88-95. PubMed ID: 25435166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires.
    Rosini M; Magri R
    ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic states in prismatic core multishell nanowires.
    Ferrari G; Goldoni G; Bertoni A; Cuoghi G; Molinari E
    Nano Lett; 2009 Apr; 9(4):1631-5. PubMed ID: 19320440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-confinement effects in InAs-InP core-shell nanowires.
    Zanolli Z; Pistol ME; Fröberg LE; Samuelson L
    J Phys Condens Matter; 2007 Jul; 19(29):295219. PubMed ID: 21483071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed Quasi-1D Potential Structures Realized in Compositionally Graded InAs1-xPx Nanowires.
    Nylund G; Storm K; Lehmann S; Capasso F; Samuelson L
    Nano Lett; 2016 Feb; 16(2):1017-21. PubMed ID: 26788886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Transport and Sub-Band Structure of Modulation-Doped GaAs/AlAs Core-Superlattice Nanowires.
    Irber DM; Seidl J; Carrad DJ; Becker J; Jeon N; Loitsch B; Winnerl J; Matich S; Döblinger M; Tang Y; Morkötter S; Abstreiter G; Finley JJ; Grayson M; Lauhon LJ; Koblmüller G
    Nano Lett; 2017 Aug; 17(8):4886-4893. PubMed ID: 28732167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and structural properties of rhombohedral [1 1 1] and [1 1 0] oriented ultra-thin bismuth nanowires.
    Ansari L; Gity F; Greer JC
    J Phys Condens Matter; 2017 Feb; 29(6):065301. PubMed ID: 28002054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The local electronic structure of alpha-Li3N.
    Fister TT; Seidler GT; Shirley EL; Vila FD; Rehr JJ; Nagle KP; Linehan JC; Cross JO
    J Chem Phys; 2008 Jul; 129(4):044702. PubMed ID: 18681665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.
    Zamani RR; Hage FS; Lehmann S; Ramasse QM; Dick KA
    Nano Lett; 2018 Mar; 18(3):1557-1563. PubMed ID: 29116807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires.
    Liao G; Luo N; Chen KQ; Xu HQ
    J Phys Condens Matter; 2016 Apr; 28(13):135303. PubMed ID: 26951953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled polytypic and twin-plane superlattices in iii-v nanowires.
    Caroff P; Dick KA; Johansson J; Messing ME; Deppert K; Samuelson L
    Nat Nanotechnol; 2009 Jan; 4(1):50-5. PubMed ID: 19119283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures.
    Funk S; Royo M; Zardo I; Rudolph D; Morkötter S; Mayer B; Becker J; Bechtold A; Matich S; Döblinger M; Bichler M; Koblmüller G; Finley JJ; Bertoni A; Goldoni G; Abstreiter G
    Nano Lett; 2013; 13(12):6189-96. PubMed ID: 24274328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy.
    Wang J; Li Q; Egerton RF
    Micron; 2007; 38(4):346-53. PubMed ID: 16938457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Semimetal Nanowire Rectifier: Balancing Quantum Confinement and Surface Electronegativity.
    Sanchez-Soares A; Greer JC
    Nano Lett; 2016 Dec; 16(12):7639-7644. PubMed ID: 27960465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical far-field extinction of a single GaAs nanowire towards in situ size control of aerotaxy nanowire growth.
    Chen Y; Anttu N; Sivakumar S; Gompou E; Magnusson MH
    Nanotechnology; 2020 Mar; 31(13):134001. PubMed ID: 31917683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The theoretical direct-band-gap optical gain of Germanium nanowires.
    Xiong W; Wang JW; Fan WJ; Song ZG; Tan CS
    Sci Rep; 2020 Jan; 10(1):32. PubMed ID: 31913342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantized Exciton Motion and Fine Energy-Level Structure of a Single Perovskite Nanowire.
    Tang Y; Yin C; Jing Q; Zhang C; Yu ZG; Lu Z; Xiao M; Wang X
    Nano Lett; 2022 Apr; 22(7):2907-2914. PubMed ID: 35362973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct measurement of band edge discontinuity in individual core-shell nanowires by photocurrent spectroscopy.
    Chen G; Sun G; Ding YJ; Prete P; Miccoli I; Lovergine N; Shtrikman H; Kung P; Livneh T; Spanier JE
    Nano Lett; 2013 Sep; 13(9):4152-7. PubMed ID: 23937245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding quantum confinement in nanowires: basics, applications and possible laws.
    Mohammad SN
    J Phys Condens Matter; 2014 Oct; 26(42):423202. PubMed ID: 25245123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.