These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 25435220)
1. Iron speciation by microsequential injection solid phase spectrometry using 3-hydroxy-1(H)-2-methyl-4-pyridinone as chromogenic reagent. Suárez R; Mesquita RB; Rangel M; Cerdà V; Rangel AO Talanta; 2015 Feb; 133():15-20. PubMed ID: 25435220 [TBL] [Abstract][Full Text] [Related]
2. Determination of iron(III) in water samples by microsequential injection solid phase spectrometry using an hexadentate 3-hydroxy-4-pyridinone chelator as reagent. Miranda JLA; Mesquita RBR; Nunes A; Rangel M; Rangel AOSS Talanta; 2019 Jan; 191():409-414. PubMed ID: 30262077 [TBL] [Abstract][Full Text] [Related]
3. Iron speciation in natural waters by sequential injection analysis with a hexadentate 3-hydroxy-4-pyridinone chelator as chromogenic agent. Miranda JL; Mesquita RB; Nunes A; Rangel M; Rangel AO Talanta; 2016 Feb; 148():633-40. PubMed ID: 26653494 [TBL] [Abstract][Full Text] [Related]
4. Microsequential injection lab-on-valve system for the spectrophotometric bi-parametric determination of iron and copper in natural waters. González A; Mesquita RBR; Avivar J; Moniz T; Rangel M; Cerdà V; Rangel AOSS Talanta; 2017 May; 167():703-708. PubMed ID: 28340782 [TBL] [Abstract][Full Text] [Related]
5. Exploiting the use of 3,4-HPO ligands as nontoxic reagents for the determination of iron in natural waters with a sequential injection approach. Mesquita RB; Suárez R; Cerdà V; Rangel M; Rangel AO Talanta; 2013 Apr; 108():38-45. PubMed ID: 23601867 [TBL] [Abstract][Full Text] [Related]
6. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters. Santos IC; Mesquita RB; Rangel AO Anal Chim Acta; 2015 Sep; 891():171-8. PubMed ID: 26388376 [TBL] [Abstract][Full Text] [Related]
7. Deferiprone, a non-toxic reagent for determination of iron in samples via sequential injection analysis. Pragourpun K; Sakee U; Fernandez C; Kruanetr S Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():110-7. PubMed ID: 25699700 [TBL] [Abstract][Full Text] [Related]
8. Exploiting the bead injection LOV approach to carry out spectrophotometric assays in wine: application to the determination of iron. Vidigal SS; Tóth IV; Rangel AO Talanta; 2011 Jun; 84(5):1298-303. PubMed ID: 21641441 [TBL] [Abstract][Full Text] [Related]
10. Greener and wide applicability range flow-based spectrophotometric method for iron determination in fresh and marine water. Ribas TCF; Mesquita RBR; Moniz T; Rangel M; Rangel AOSS Talanta; 2020 Aug; 216():120925. PubMed ID: 32456899 [TBL] [Abstract][Full Text] [Related]
11. Non-transferrin-bound iron determination in blood serum using microsequential injection solid phase spectrometry- proof of concept. Miranda JLA; Mesquita RBR; Leite A; Silva AMN; Rangel M; Rangel AOSS Talanta; 2023 May; 257():124345. PubMed ID: 36791595 [TBL] [Abstract][Full Text] [Related]
12. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters. Jiang HM; Yang T; Wang YH; Lian HZ; Hu X Talanta; 2013 Nov; 116():361-7. PubMed ID: 24148416 [TBL] [Abstract][Full Text] [Related]
13. Determination of total protein content in white wines by solid phase spectrometry in a SI-LOV system. Vidigal SS; Tóth IV; Rangel AO Talanta; 2012 Jul; 96():102-6. PubMed ID: 22817935 [TBL] [Abstract][Full Text] [Related]
14. Development of a new on-line system for the sequential speciation and determination of chromium species in various samples using a combination of chelating and ion exchange resins. Şahan S; Saçmacı Ş; Kartal Ş; Saçmacı M; Şahin U; Ülgen A Talanta; 2014 Mar; 120():391-7. PubMed ID: 24468387 [TBL] [Abstract][Full Text] [Related]
15. Reverse flow injection analysis method for catalytic spectrophotometric determination of iron in estuarine and coastal waters: a comparison with normal flow injection analysis. Huang Y; Yuan D; Dai M; Liu Y Talanta; 2012 May; 93():86-93. PubMed ID: 22483881 [TBL] [Abstract][Full Text] [Related]
16. Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method. Santos IC; Mesquita RB; Bordalo AA; Rangel AO Talanta; 2015 Feb; 133():7-14. PubMed ID: 25435219 [TBL] [Abstract][Full Text] [Related]
17. Multivariate optimization of solid-phase extraction applied to iron determination in finished waters. Vanloot P; Coulomb B; Brach-Papa C; Sergent M; Boudenne JL Chemosphere; 2007 Nov; 69(9):1351-60. PubMed ID: 17604823 [TBL] [Abstract][Full Text] [Related]
18. Speciation of inorganic arsenic in a sequential injection dual mini-column system coupled with hydride generation atomic fluorescence spectrometry. Chen M; Huo Y; Wang J Talanta; 2009 Apr; 78(1):88-93. PubMed ID: 19174208 [TBL] [Abstract][Full Text] [Related]
19. Mercury speciation in sea food by flow injection cold vapor atomic absorption spectrometry using selective solid phase extraction. Vereda Alonso E; Siles Cordero MT; García de Torres A; Cañada Rudner P; Cano Pavón JM Talanta; 2008 Oct; 77(1):53-9. PubMed ID: 18804598 [TBL] [Abstract][Full Text] [Related]
20. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry. Escudero LB; Olsina RA; Wuilloud RG Talanta; 2013 Nov; 116():133-40. PubMed ID: 24148384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]