BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25435334)

  • 41. Processing of β-glucosidase-silk fibroin nanoparticle bioconjugates and their characteristics.
    Cao TT; Zhou ZZ; Zhang YQ
    Appl Biochem Biotechnol; 2014 May; 173(2):544-51. PubMed ID: 24671567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlling silk fibroin particle features for drug delivery.
    Lammel AS; Hu X; Park SH; Kaplan DL; Scheibel TR
    Biomaterials; 2010 Jun; 31(16):4583-91. PubMed ID: 20219241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical, structural and thermal properties of Gonometa postica silk fibroin, a potential biomaterial.
    Mhuka V; Dube S; Nindi MM
    Int J Biol Macromol; 2013 Jan; 52():305-11. PubMed ID: 23000253
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.
    Ha SW; Tonelli AE; Hudson SM
    Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning.
    Hang Y; Zhang Y; Jin Y; Shao H; Hu X
    Int J Biol Macromol; 2012 Dec; 51(5):980-6. PubMed ID: 22935694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms of silk fibroin sol-gel transitions.
    Matsumoto A; Chen J; Collette AL; Kim UJ; Altman GH; Cebe P; Kaplan DL
    J Phys Chem B; 2006 Nov; 110(43):21630-8. PubMed ID: 17064118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm.
    Ochi A; Hossain KS; Magoshi J; Nemoto N
    Biomacromolecules; 2002; 3(6):1187-96. PubMed ID: 12425655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface.
    Tang X; Qiao X; Miller R; Sun K
    J Sci Food Agric; 2016 Dec; 96(15):4918-4928. PubMed ID: 27256721
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer.
    Tian Y; Jiang X; Chen X; Shao Z; Yang W
    Adv Mater; 2014 Nov; 26(43):7393-8. PubMed ID: 25238148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioengineered silk proteins to control cell and tissue functions.
    Preda RC; Leisk G; Omenetto F; Kaplan DL
    Methods Mol Biol; 2013; 996():19-41. PubMed ID: 23504416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solubility and rheological behavior of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide.
    Xu Y; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2005 Apr; 35(3-4):155-61. PubMed ID: 15811470
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL
    Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silk fibroin-derived nanoparticles for biomedical applications.
    Mathur AB; Gupta V
    Nanomedicine (Lond); 2010 Jul; 5(5):807-20. PubMed ID: 20662650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin.
    Ha SW; Gracz HS; Tonelli AE; Hudson SM
    Biomacromolecules; 2005; 6(5):2563-9. PubMed ID: 16153093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functionalization of silk fibroin with NeutrAvidin and biotin.
    Wang X; Kaplan DL
    Macromol Biosci; 2011 Jan; 11(1):100-10. PubMed ID: 20824692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro studies on the structure and properties of silk fibroin aqueous solutions in silkworm.
    Jin Y; Hang Y; Luo J; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2013 Nov; 62():162-6. PubMed ID: 23994738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Balanced electrostatic blending approach--an alternative to chemical crosslinking of Thai silk fibroin/gelatin scaffold.
    Jetbumpenkul P; Amornsudthiwat P; Kanokpanont S; Damrongsakkul S
    Int J Biol Macromol; 2012 Jan; 50(1):7-13. PubMed ID: 21983026
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silk fibroin degumming affects scaffold structure and release of macromolecular drugs.
    Nultsch K; Germershaus O
    Eur J Pharm Sci; 2017 Aug; 106():254-261. PubMed ID: 28603031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.