These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25435463)

  • 1. Moving thermal gradients in gas chromatography.
    Tolley HD; Tolley SE; Wang A; Lee ML
    J Chromatogr A; 2014 Dec; 1374():189-198. PubMed ID: 25435463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow field thermal gradient gas chromatography.
    Boeker P; Leppert J
    Anal Chem; 2015 Sep; 87(17):9033-41. PubMed ID: 26235451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic thermal gradient gas chromatography.
    Contreras JA; Wang A; Rockwood AL; Tolley HD; Lee ML
    J Chromatogr A; 2013 Aug; 1302():143-51. PubMed ID: 23845755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial thermal gradients in microchip gas chromatography.
    Wang A; Hynynen S; Hawkins AR; Tolley SE; Tolley HD; Lee ML
    J Chromatogr A; 2014 Dec; 1374():216-223. PubMed ID: 25476685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.
    Wilson RB; Siegler WC; Hoggard JC; Fitz BD; Nadeau JS; Synovec RE
    J Chromatogr A; 2011 May; 1218(21):3130-9. PubMed ID: 21255787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the effects of negative thermal gradients on separation performance of gas chromatography.
    Leppert J; Blumberg LM; Wüst M; Boeker P
    J Chromatogr A; 2021 Mar; 1640():461943. PubMed ID: 33556678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak focusing based on stationary phase thickness gradient.
    Li MW; Zhu H; Zhou M; She J; Li Z; Kurabayashi K; Fan X
    J Chromatogr A; 2020 Mar; 1614():460737. PubMed ID: 31831145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Static Thermal Gradient to Isothermal Conditions in Gas Chromatography Using a Stochastic Transport Model.
    Avila S; Tolley HD; Iverson BD; Hawkins AR; Porter NL; Johnson SL; Lee ED; Lee ML
    Anal Chem; 2021 May; 93(17):6739-6745. PubMed ID: 33885280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed gas chromatography using synchronized dual-valve injection.
    Gross GM; Prazen BJ; Grate JW; Synovec RE
    Anal Chem; 2004 Jul; 76(13):3517-24. PubMed ID: 15228319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of first-dimension column film thickness on comprehensive two-dimensional gas chromatographic separation.
    Zhu Z; Harynuk J; Górecki T
    J Chromatogr A; 2006 Feb; 1105(1-2):17-24. PubMed ID: 16207491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating Capillary Gas Chromatographic Separations including Thermal Gradient Conditions.
    Tolley HD; Avila S; Iverson BD; Foster AR; Hawkins AR; Tolley SE; Lee ML
    Anal Chem; 2021 Feb; 93(4):2291-2298. PubMed ID: 33405883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of spatial thermal gradient gas chromatography.
    Leppert J; Müller PJ; Chopra MD; Blumberg LM; Boeker P
    J Chromatogr A; 2020 Jun; 1620():460985. PubMed ID: 32151413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the Dynamic Thermal Gradient to Temperature-Programmed Conditions in Gas Chromatography Using a Stochastic Transport Model.
    Avila S; Tolley HD; Iverson BD; Hawkins AR; Johnson SL; Lee ML
    Anal Chem; 2021 Aug; 93(34):11785-11791. PubMed ID: 34406737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of axial temperature gradient on chromatographic efficiency under adiabatic conditions.
    Horváth K; Horváth S; Lukács D
    J Chromatogr A; 2017 Feb; 1483():80-85. PubMed ID: 28062080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density gradients in packed columns: II. Effects of density gradients on efficiency in supercritical fluid separations.
    Baker LR; Orton AW; Stark MA; Goates SR
    J Chromatogr A; 2009 Jul; 1216(29):5594-9. PubMed ID: 19539294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of gas chromatographic peak width in capillary columns at different temperatures, carrier gas flows, column lengths, inside diameters and carbon numbers.
    Krisnangkura K; Pongtonkulpanich V
    J Sep Sci; 2006 Jan; 29(1):81-9. PubMed ID: 16485712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peak sweeping and gating using thermal gradient gas chromatography.
    Contreras JA; Rockwood AL; Tolley HD; Lee ML
    J Chromatogr A; 2013 Feb; 1278():160-5. PubMed ID: 23352829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.
    Ghosh A; Johnson JE; Nuss JG; Stark BA; Hawkins AR; Tolley LT; Iverson BD; Tolley HD; Lee ML
    J Chromatogr A; 2017 Sep; 1517():134-141. PubMed ID: 28855092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions.
    Vanderlinden K; Broeckhoven K; Vanderheyden Y; Desmet G
    J Chromatogr A; 2016 Apr; 1442():73-82. PubMed ID: 26987413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band broadening along gradient reversed phase columns: a potential gain in resolution factor.
    Gritti F; Guiochon G
    J Chromatogr A; 2014 May; 1342():24-9. PubMed ID: 24735602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.