These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25435493)

  • 1. The comparison of ultrasonic effects in different metal melts.
    Kang J; Zhang X; Wang S; Ma J; Huang T
    Ultrasonics; 2015 Mar; 57():11-7. PubMed ID: 25435493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of acoustic streaming in water and aluminum melt during ultrasonic irradiation.
    Yamamoto T; Kubo K; Komarov SV
    Ultrason Sonochem; 2021 Mar; 71():105381. PubMed ID: 33157358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation and experimental validation of SiC nanoparticle distribution in magnesium melts during ultrasonic cavitation based processing of magnesium matrix nanocomposites.
    Song S; Zhou X; Li L; Ma W
    Ultrason Sonochem; 2015 May; 24():43-54. PubMed ID: 25559849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation and acoustic streaming generated by different sonotrode tips.
    Fang Y; Yamamoto T; Komarov S
    Ultrason Sonochem; 2018 Nov; 48():79-87. PubMed ID: 30080589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free surface entrainment of oxide particles and their role in ultrasonic treatment performance of aluminum alloys.
    Sun J; Higashi K; Romankov S; Yamamoto T; Komarov S
    Ultrason Sonochem; 2022 Nov; 90():106209. PubMed ID: 36327921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic depolymerization of Li
    Min Y; Shi Z; Liu C
    Ultrason Sonochem; 2017 Nov; 39():727-732. PubMed ID: 28732999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Modelling of the Ultrasonic Treatment of Aluminium Melts: An Overview of Recent Advances.
    Lebon B; Tzanakis I; Pericleous K; Eskin D
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31590463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ultrasonic processing on solidification microstructure and heat transfer in stainless steel melt.
    Zhang X; Kang J; Wang S; Ma J; Huang T
    Ultrason Sonochem; 2015 Nov; 27():307-315. PubMed ID: 26186849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Acoustic Streaming in Formation of Unsteady Flow in Billet Sump during Ultrasonic DC Casting of Aluminum Alloys.
    Komarov S; Yamamoto T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental studies of ultrasonic melt processing.
    Eskin DG; Tzanakis I; Wang F; Lebon GSB; Subroto T; Pericleous K; Mi J
    Ultrason Sonochem; 2019 Apr; 52():455-467. PubMed ID: 30594518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt.
    Eskin GI; Eskin DG
    Ultrason Sonochem; 2003 Jul; 10(4-5):297-301. PubMed ID: 12818397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Simulation on the Acoustic Streaming Driven Mixing in Ultrasonic Plasticizing of Thermoplastic Polymers.
    Wu W; Zou Y; Wei G; Jiang B
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of acoustic cavitation in water and molten aluminum alloy.
    Komarov S; Oda K; Ishiwata Y; Dezhkunov N
    Ultrason Sonochem; 2013 Mar; 20(2):754-61. PubMed ID: 23141190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchrotron radiation X-ray imaging of cavitation bubbles in Al-Cu alloy melt.
    Huang H; Shu D; Fu Y; Wang J; Sun B
    Ultrason Sonochem; 2014 Jul; 21(4):1275-8. PubMed ID: 24433976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part I: Cavitation characteristics.
    Li Z; Xu Z; Ma L; Wang S; Liu X; Yan J
    Ultrason Sonochem; 2018 Dec; 49():249-259. PubMed ID: 30146471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contactless Ultrasonic Cavitation in Alloy Melts.
    Pericleous K; Bojarevics V; Djambazov G; Dybalska A; Griffiths WD; Tonry C
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31684156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.
    Lo CW; Chen SF; Li CP; Lu PC
    Ann Biomed Eng; 2010 Oct; 38(10):3162-72. PubMed ID: 20490686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic resonance for contactless ultrasonic cavitation in alloy melts.
    Tonry CEH; Djambazov G; Dybalska A; Griffiths WD; Beckwith C; Bojarevics V; Pericleous KA
    Ultrason Sonochem; 2020 May; 63():104959. PubMed ID: 31958707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.