These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25435493)

  • 21. Ultrasonic Bending Vibration-Assisted Purification Experimental Study of 7085 Aluminum Alloy Melt.
    Shi C; He J; Liao H; Mao D
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical modelling of acoustic streaming during the ultrasonic melt treatment of direct-chill (DC) casting.
    Lebon GSB; Salloum-Abou-Jaoude G; Eskin D; Tzanakis I; Pericleous K; Jarry P
    Ultrason Sonochem; 2019 Jun; 54():171-182. PubMed ID: 30755390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A viable method to predict acoustic streaming in presence of cavitation.
    Louisnard O
    Ultrason Sonochem; 2017 Mar; 35(Pt A):518-524. PubMed ID: 27666196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt.
    Dong F; Li X; Zhang L; Ma L; Li R
    Ultrason Sonochem; 2016 Jul; 31():150-6. PubMed ID: 26964935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of non-dendritic structure formation in Mg-Al alloy solidified with ultrasonic field.
    Feng X; Zhao F; Jia H; Li Y; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):113-119. PubMed ID: 28946404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle.
    Matsukage KN; Jing Z; Karato S
    Nature; 2005 Nov; 438(7067):488-91. PubMed ID: 16306990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced nanoflow behaviors of polymer melts using dispersed nanoparticles and ultrasonic vibration.
    Tian W; Yung KL; Xu Y; Huang L; Kong J; Xie Y
    Nanoscale; 2011 Oct; 3(10):4094-100. PubMed ID: 21901225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental and numerical investigation of acoustic pressures in different liquids.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D
    Ultrason Sonochem; 2018 Apr; 42():411-421. PubMed ID: 29429686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on hydrogen removal of AZ91 alloys using ultrasonic argon degassing process.
    Liu X; Zhang Z; Hu W; Le Q; Bao L; Cui J; Jiang J
    Ultrason Sonochem; 2015 Sep; 26():73-80. PubMed ID: 25649834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viscosity and related structure transformation of fluorine bearing silicate melt under ultrasonic field.
    Min Y; Luo J; Liu C
    Ultrason Sonochem; 2019 Jul; 55():289-296. PubMed ID: 30712859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultralow viscosity of carbonate melts at high pressures.
    Kono Y; Kenney-Benson C; Hummer D; Ohfuji H; Park C; Shen G; Wang Y; Kavner A; Manning CE
    Nat Commun; 2014 Oct; 5():5091. PubMed ID: 25311627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ observation of melt pool evolution in ultrasonic vibration-assisted directed energy deposition.
    El-Azab SA; Zhang C; Jiang S; Vyatskikh AL; Valdevit L; Lavernia EJ; Schoenung JM
    Sci Rep; 2023 Oct; 13(1):17705. PubMed ID: 37848463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of ultrasonic cavitation on ICP source radiation intensity].
    Chen JZ; Wen N; Sun J; Li X; Yang BZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1338-41. PubMed ID: 23905347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noncontact transportation in water using ultrasonic traveling waves.
    Nomura S; Matula TJ; Satonobu J; Crum LA
    J Acoust Soc Am; 2007 Mar; 121(3):1332-6. PubMed ID: 17407868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.
    Wiklund M; Green R; Ohlin M
    Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces.
    Belova V; Gorin DA; Shchukin DG; Möhwald H
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):417-25. PubMed ID: 21280665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applying of Pulsed Electromagnetic Processing of Melts in Laboratory and Industrial Conditions.
    Krymsky V; Shaburova N
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29874841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the ultrasound field of high viscosity mixtures: Experimental and numerical investigation of a lab scale batch reactor.
    Bampouli A; Goris Q; Van Olmen J; Solmaz S; Noorul Hussain M; Stefanidis GD; Van Gerven T
    Ultrason Sonochem; 2023 Jul; 97():106444. PubMed ID: 37257210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.
    Madelin G; Grucker D; Franconi JM; Thiaudiere E
    Ultrasonics; 2006 Jul; 44(3):272-8. PubMed ID: 16650447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.