BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25435646)

  • 1. O
    Diao T; Stahl SS
    Polyhedron; 2014 Dec; 84():96-102. PubMed ID: 25435646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allylic C-H acetoxylation with a 4,5-diazafluorenone-ligated palladium catalyst: a ligand-based strategy to achieve aerobic catalytic turnover.
    Campbell AN; White PB; Guzei IA; Stahl SS
    J Am Chem Soc; 2010 Nov; 132(43):15116-9. PubMed ID: 20929224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C-H Acetoxylation Catalyzed by Pd(OAc)
    Jaworski JN; Kozack CV; Tereniak SJ; Knapp SMM; Landis CR; Miller JT; Stahl SS
    J Am Chem Soc; 2019 Jul; 141(26):10462-10474. PubMed ID: 31184479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc)
    Kozack CV; Tereniak SJ; Jaworski JN; Li B; Bruns DL; Knapp SMM; Landis CR; Stahl SS
    ACS Catal; 2021 Jun; 11():6363-6370. PubMed ID: 34422447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic allylic C-H acetoxylation and benzoyloxylation via suggested (eta(3)-allyl)palladium(IV) intermediates.
    Pilarski LT; Selander N; Böse D; Szabó KJ
    Org Lett; 2009 Dec; 11(23):5518-21. PubMed ID: 19899750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.
    Vedernikov AN
    Acc Chem Res; 2012 Jun; 45(6):803-13. PubMed ID: 22087633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming the "oxidant problem": strategies to use O2 as the oxidant in organometallic C-H oxidation reactions catalyzed by Pd (and Cu).
    Campbell AN; Stahl SS
    Acc Chem Res; 2012 Jun; 45(6):851-63. PubMed ID: 22263575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Couple Involving NO
    Wenzel MN; Owens PK; Bray JT; Lynam JM; Aguiar PM; Reed C; Lee JD; Hamilton JF; Whitwood AC; Fairlamb IJ
    J Am Chem Soc; 2017 Jan; 139(3):1177-1190. PubMed ID: 28075565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanism of Rhodium-Catalyzed Allylic C-H Amination.
    Harris RJ; Park J; Nelson TAF; Iqbal N; Salgueiro DC; Bacsa J; MacBeth CE; Baik MH; Blakey SB
    J Am Chem Soc; 2020 Mar; 142(12):5842-5851. PubMed ID: 32119537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate and mechanism of the reversible formation of cationic (eta3-allyl)-palladium complexes in the oxidative addition of allylic acetate to palladium(0) complexes ligated by diphosphanes.
    Amatore C; Gamez S; Jutand A
    Chemistry; 2001 Mar; 7(6):1273-80. PubMed ID: 11322554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental-Computational Synergy for Selective Pd(II)-Catalyzed C-H Activation of Aryl and Alkyl Groups.
    Yang YF; Hong X; Yu JQ; Houk KN
    Acc Chem Res; 2017 Nov; 50(11):2853-2860. PubMed ID: 29115826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium(II)-Catalyzed Oxidative Difunctionalization of Alkenes: Bond Forming at a High-Valent Palladium Center.
    Yin G; Mu X; Liu G
    Acc Chem Res; 2016 Nov; 49(11):2413-2423. PubMed ID: 27739689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium-catalyzed cyclization of allylsilanes with nucleophilic displacement of the silyl group.
    Macsári I; Szabó KJ
    Chemistry; 2001 Oct; 7(19):4097-106. PubMed ID: 11686587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Palladium(I) in Aerobic Oxidation Catalysis.
    Jaworski JN; McCann SD; Guzei IA; Stahl SS
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3605-3610. PubMed ID: 28217896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-catalyzed allylic C-H bond functionalization of olefins.
    Liu G; Wu Y
    Top Curr Chem; 2010; 292():195-209. PubMed ID: 21500407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular aerobic oxidative allylic amination of simple alkenes with diarylamines catalyzed by the Pd(OCOCF3)2/NPMoV/O2 system.
    Shimizu Y; Obora Y; Ishii Y
    Org Lett; 2010 Mar; 12(6):1372-4. PubMed ID: 20158264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences on the regioselectivity of palladium-catalyzed allylic alkylations.
    Kazmaier U; Stolz D; Krämer K; Zumpe FL
    Chemistry; 2008; 14(4):1322-9. PubMed ID: 18000997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (Pi-allyl)palladium complexes bearing diphosphinidenecyclobutene ligands (DPCB): highly active catalysts for direct conversion of allylic alcohols.
    Ozawa F; Okamoto H; Kawagishi S; Yamamoto S; Minami T; Yoshifuji M
    J Am Chem Soc; 2002 Sep; 124(37):10968-9. PubMed ID: 12224930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistically driven development of iridium catalysts for asymmetric allylic substitution.
    Hartwig JF; Stanley LM
    Acc Chem Res; 2010 Dec; 43(12):1461-75. PubMed ID: 20873839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scope and mechanism of allylic C-H amination of terminal alkenes by the palladium/PhI(OPiv)2 catalyst system: insights into the effect of naphthoquinone.
    Yin G; Wu Y; Liu G
    J Am Chem Soc; 2010 Sep; 132(34):11978-87. PubMed ID: 20690676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.