These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2543575)

  • 1. The effects of multiple amino acid substitutions on the polypeptide backbone of tuna and horse cytochromes c.
    Gao Y; Lee AD; Williams RJ; Williams G
    Eur J Biochem; 1989 Jun; 182(1):57-65. PubMed ID: 2543575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution three-dimensional structure of horse heart cytochrome c.
    Bushnell GW; Louie GV; Brayer GD
    J Mol Biol; 1990 Jul; 214(2):585-95. PubMed ID: 2166170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-NMR studies show that the Thr-102 mutant of yeast iso-1-cytochrome c is a typical member of the eukaryotic cytochrome c family.
    Pielak GJ; Boyd J; Moore GR; Williams RJ
    Eur J Biochem; 1988 Oct; 177(1):167-77. PubMed ID: 2846294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c.
    Louie GV; Brayer GD
    J Mol Biol; 1990 Jul; 214(2):527-55. PubMed ID: 2166169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solution structures of tuna and horse cytochromes c.
    Moore GR; Williams RJ
    Eur J Biochem; 1980 Feb; 103(3):533-41. PubMed ID: 6244162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assignment of proton resonances, identification of secondary structural elements, and analysis of backbone chemical shifts for the C102T variant of yeast iso-1-cytochrome c and horse cytochrome c.
    Gao Y; Boyd J; Williams RJ; Pielak GJ
    Biochemistry; 1990 Jul; 29(30):6994-7003. PubMed ID: 2171638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of protein structures in solution using local conformations derived from NMR data: application to cytochrome c.
    Kar L; Sherman SA; Johnson ME
    J Biomol Struct Dyn; 1994 Dec; 12(3):527-58. PubMed ID: 7727058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of amino acid substitutions on the conformational energy of cytochrome c.
    Warme PK
    Biochemistry; 1975 Aug; 14(16):3518-26. PubMed ID: 169879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bond-linked pathways of peptide units and polar groups of amino acid residues suitable for electron transfer in cytochrome c proteins.
    Ramasarma T; Vaigundan D
    Mol Cell Biochem; 2019 Mar; 453(1-2):197-203. PubMed ID: 30194583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast iso-1-cytochrome c. A 2.8 A resolution three-dimensional structure determination.
    Louie GV; Hutcheon WL; Brayer GD
    J Mol Biol; 1988 Jan; 199(2):295-314. PubMed ID: 2832611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of reduction by free flavin semiquinones of the components of the cytochrome c-cytochrome c peroxidase complex and intracomplex electron transfer.
    Hazzard JT; Poulos TL; Tollin G
    Biochemistry; 1987 May; 26(10):2836-48. PubMed ID: 3038167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 1H NMR study of structurally relevant inter-segmental hydrogen bond in cytochrome c.
    Yamamoto Y
    Biochim Biophys Acta; 1997 Dec; 1343(2):193-202. PubMed ID: 9434109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-NMR studies of the effects of ionic strength and pH on the hyperfine-shifted resonances and phenylalanine-82 environment of three species of mitochondrial ferricytochrome c.
    Moench SJ; Shi TM; Satterlee JD
    Eur J Biochem; 1991 May; 197(3):631-41. PubMed ID: 1851480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c.
    Feng Y; Roder H; Englander SW
    Biochemistry; 1990 Apr; 29(14):3494-504. PubMed ID: 2162193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FTIR-monitored thermal titration reveals different mechanisms for the alkaline isomerization of tuna compared to horse and bovine cytochromes c.
    Filosa A; Ismail AA; English AM
    J Biol Inorg Chem; 1999 Dec; 4(6):717-26. PubMed ID: 10631603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural role of the tyrosine residues of cytochrome c.
    Eley CG; Moore GR; Williams RJ; Neupert W; Boon PJ; Brinkhof HH; Nivard RJ; Tesser GI
    Biochem J; 1982 Jul; 205(1):153-65. PubMed ID: 6289807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Local structure of cytochrome c from horse heart in solution. Conformational analysis using data of two-dimensional nuclear Overhauser effect spectroscopy].
    Andrianov AM; Akhrem AA
    Mol Biol (Mosk); 1991; 25(1):194-204. PubMed ID: 1654519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of bonito (katsuo) ferrocytochrome c at 2.3 A resolution. II. Structure and function.
    Tanaka N; Yamane T; Tsukihara T; Ashida T; Kakudo M
    J Biochem; 1975 Jan; 77(1?):147-62. PubMed ID: 166072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation state-dependent conformational changes in cytochrome c.
    Berghuis AM; Brayer GD
    J Mol Biol; 1992 Feb; 223(4):959-76. PubMed ID: 1311391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1H NMR.
    Qi PX; Beckman RA; Wand AJ
    Biochemistry; 1996 Sep; 35(38):12275-86. PubMed ID: 8823161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.