BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25436017)

  • 1. Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments.
    Davidson PM; Denais C; Bakshi MC; Lammerding J
    Cell Mol Bioeng; 2014 Sep; 7(3):293-306. PubMed ID: 25436017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments.
    Davidson PM; Sliz J; Isermann P; Denais C; Lammerding J
    Integr Biol (Camb); 2015 Dec; 7(12):1534-46. PubMed ID: 26549481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments.
    Thiam HR; Vargas P; Carpi N; Crespo CL; Raab M; Terriac E; King MC; Jacobelli J; Alberts AS; Stradal T; Lennon-Dumenil AM; Piel M
    Nat Commun; 2016 Mar; 7():10997. PubMed ID: 26975831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleus and nucleus-cytoskeleton connections in 3D cell migration.
    Liu L; Luo Q; Sun J; Song G
    Exp Cell Res; 2016 Oct; 348(1):56-65. PubMed ID: 27609669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.
    Cao X; Moeendarbary E; Isermann P; Davidson PM; Wang X; Chen MB; Burkart AK; Lammerding J; Kamm RD; Shenoy VB
    Biophys J; 2016 Oct; 111(7):1541-1552. PubMed ID: 27705776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assays to measure nuclear mechanics in interphase cells.
    Isermann P; Davidson PM; Sliz JD; Lammerding J
    Curr Protoc Cell Biol; 2012 Sep; Chapter 22():Unit22.16. PubMed ID: 22968843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical assays to probe the mechanical properties of the interphase cell nucleus: substrate strain application and microneedle manipulation.
    Lombardi ML; Zwerger M; Lammerding J
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21946671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated analysis of cell migration and nuclear envelope rupture in confined environments.
    Elacqua JJ; McGregor AL; Lammerding J
    PLoS One; 2018; 13(4):e0195664. PubMed ID: 29649271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Squish and squeeze-the nucleus as a physical barrier during migration in confined environments.
    McGregor AL; Hsia CR; Lammerding J
    Curr Opin Cell Biol; 2016 Jun; 40():32-40. PubMed ID: 26895141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly and Use of a Microfluidic Device to Study Cell Migration in Confined Environments.
    Keys J; Windsor A; Lammerding J
    Methods Mol Biol; 2018; 1840():101-118. PubMed ID: 30141042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear mechanics in cancer.
    Denais C; Lammerding J
    Adv Exp Med Biol; 2014; 773():435-70. PubMed ID: 24563360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates.
    Booth-Gauthier EA; Du V; Ghibaudo M; Rape AD; Dahl KN; Ladoux B
    Integr Biol (Camb); 2013 Mar; 5(3):569-77. PubMed ID: 23370891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Causes and consequences of nuclear envelope alterations in tumour progression.
    Bell ES; Lammerding J
    Eur J Cell Biol; 2016 Nov; 95(11):449-464. PubMed ID: 27397692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer cell migration in 3D tissue: negotiating space by proteolysis and nuclear deformability.
    Krause M; Wolf K
    Cell Adh Migr; 2015; 9(5):357-66. PubMed ID: 26301444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Nuclear Stiffness on Cell Mechanics and Migration of Human Breast Cancer Cells.
    Fischer T; Hayn A; Mierke CT
    Front Cell Dev Biol; 2020; 8():393. PubMed ID: 32548118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation therapy affects YAP expression and intracellular localization by modulating lamin A/C levels in breast cancer.
    La Verde G; Artiola V; Pugliese M; La Commara M; Arrichiello C; Muto P; Netti PA; Fusco S; Panzetta V
    Front Bioeng Biotechnol; 2022; 10():969004. PubMed ID: 36091449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels.
    Scianna M; Preziosi L
    J Theor Biol; 2013 Jan; 317():394-406. PubMed ID: 23147234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells.
    Liu L; Luo Q; Sun J; Wang A; Shi Y; Ju Y; Morita Y; Song G
    Exp Cell Res; 2017 Jun; 355(2):172-181. PubMed ID: 28392353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated increase of nuclear tension and lamin-A with matrix stiffness outcompetes lamin-B receptor that favors soft tissue phenotypes.
    Buxboim A; Irianto J; Swift J; Athirasala A; Shin JW; Rehfeldt F; Discher DE
    Mol Biol Cell; 2017 Nov; 28(23):3333-3348. PubMed ID: 28931598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear Membrane-Targeted Gold Nanoparticles Inhibit Cancer Cell Migration and Invasion.
    Ali MRK; Wu Y; Ghosh D; Do BH; Chen K; Dawson MR; Fang N; Sulchek TA; El-Sayed MA
    ACS Nano; 2017 Apr; 11(4):3716-3726. PubMed ID: 28333438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.