These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 25436416)
1. Exploring NAG-thiazoline and its derivatives as inhibitors of chitinolytic β-acetylglucosaminidases. Liu T; Xia M; Zhang H; Zhou H; Wang J; Shen X; Yang Q FEBS Lett; 2015 Jan; 589(1):110-6. PubMed ID: 25436416 [TBL] [Abstract][Full Text] [Related]
2. NAG-thiazoline is a potent inhibitor of the Vibrio campbellii GH20 β-N-Acetylglucosaminidase. Meekrathok P; Stubbs KA; Aunkham A; Kaewmaneewat A; Kardkuntod A; Bulmer DM; van den Berg B; Suginta W FEBS J; 2020 Nov; 287(22):4982-4995. PubMed ID: 32145141 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, Optimization, and Evaluation of Glycosylated Naphthalimide Derivatives as Efficient and Selective Insect β- N-Acetylhexosaminidase OfHex1 Inhibitors. Shen S; Dong L; Chen W; Wu R; Lu H; Yang Q; Zhang J J Agric Food Chem; 2019 Jun; 67(22):6387-6396. PubMed ID: 31090403 [TBL] [Abstract][Full Text] [Related]
4. Glycosyl triazoles as novel insect β-N-acetylhexosaminidase OfHex1 inhibitors: Design, synthesis, molecular docking and MD simulations. Dong L; Shen S; Chen W; Lu H; Xu D; Jin S; Yang Q; Zhang J Bioorg Med Chem; 2019 Jun; 27(12):2315-2322. PubMed ID: 30528165 [TBL] [Abstract][Full Text] [Related]
5. Design and synthesis of thiazolylhydrazone derivatives as inhibitors of chitinolytic N-acetyl-β-d-hexosaminidase. Yang H; Liu T; Qi H; Huang Z; Hao Z; Ying J; Yang Q; Qian X Bioorg Med Chem; 2018 Nov; 26(20):5420-5426. PubMed ID: 30274940 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of ureido thioglycosides as novel insect β‑N‑acetylhexosaminidase OfHex1 inhibitors. Shen S; Dong L; Lu H; Dong Y; Yang Q; Zhang J Bioorg Med Chem; 2020 Aug; 28(15):115602. PubMed ID: 32631559 [TBL] [Abstract][Full Text] [Related]
7. Microbial Secondary Metabolite, Phlegmacin B Chen L; Liu T; Duan Y; Lu X; Yang Q J Agric Food Chem; 2017 May; 65(19):3851-3857. PubMed ID: 28457127 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of microbial β-N-acetylhexosaminidases by 4-deoxy- and galacto-analogues of NAG-thiazoline. Krejzová J; Kalachova L; Šimon P; Pelantová H; Slámová K; Křen V Bioorg Med Chem Lett; 2014 Nov; 24(22):5321-3. PubMed ID: 25442323 [TBL] [Abstract][Full Text] [Related]
9. Structural determinants of an insect beta-N-Acetyl-D-hexosaminidase specialized as a chitinolytic enzyme. Liu T; Zhang H; Liu F; Wu Q; Shen X; Yang Q J Biol Chem; 2011 Feb; 286(6):4049-58. PubMed ID: 21106526 [TBL] [Abstract][Full Text] [Related]
10. Structure of N-acetyl-beta-D-glucosaminidase (GcnA) from the endocarditis pathogen Streptococcus gordonii and its complex with the mechanism-based inhibitor NAG-thiazoline. Langley DB; Harty DW; Jacques NA; Hunter N; Guss JM; Collyer CA J Mol Biol; 2008 Mar; 377(1):104-16. PubMed ID: 18237743 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of GlcNAc-processing glycosidases by C-6-azido-NAG-thiazoline and its derivatives. Krejzová J; Simon P; Kalachova L; Kulik N; Bojarová P; Marhol P; Pelantová H; Cvačka J; Ettrich R; Slámová K; Křen V Molecules; 2014 Mar; 19(3):3471-88. PubMed ID: 24658571 [TBL] [Abstract][Full Text] [Related]
12. Active-pocket size differentiating insectile from bacterial chitinolytic β-N-acetyl-D-hexosaminidases. Liu T; Zhang H; Liu F; Chen L; Shen X; Yang Q Biochem J; 2011 Sep; 438(3):467-74. PubMed ID: 21692744 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of NAG-thiazoline-derived inhibitors for β-N-acetyl-d-hexosaminidases. Kong H; Chen W; Lu H; Yang Q; Dong Y; Wang D; Zhang J Carbohydr Res; 2015 Sep; 413():135-44. PubMed ID: 26142545 [TBL] [Abstract][Full Text] [Related]
14. A crystal structure-guided rational design switching non-carbohydrate inhibitors' specificity between two β-GlcNAcase homologs. Liu T; Guo P; Zhou Y; Wang J; Chen L; Yang H; Qian X; Yang Q Sci Rep; 2014 Aug; 4():6188. PubMed ID: 25155420 [TBL] [Abstract][Full Text] [Related]
15. Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise. Whitworth GE; Macauley MS; Stubbs KA; Dennis RJ; Taylor EJ; Davies GJ; Greig IR; Vocadlo DJ J Am Chem Soc; 2007 Jan; 129(3):635-44. PubMed ID: 17227027 [TBL] [Abstract][Full Text] [Related]
16. Structure-Based Virtual Screening, Compound Synthesis, and Bioassay for the Design of Chitinase Inhibitors. Dong Y; Jiang X; Liu T; Ling Y; Yang Q; Zhang L; He X J Agric Food Chem; 2018 Apr; 66(13):3351-3357. PubMed ID: 29554796 [TBL] [Abstract][Full Text] [Related]
17. Identification of novel insect β-N-acetylhexosaminidase OfHex1 inhibitors based on virtual screening, biological evaluation, and molecular dynamics simulation. Dong L; Shen S; Xu Y; Wang L; Yang Q; Zhang J; Lu H J Biomol Struct Dyn; 2021 Mar; 39(5):1735-1743. PubMed ID: 32193983 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and inhibitory activity of oligosaccharide thiazolines as a class of mechanism-based inhibitors for endo-beta-N-acetylglucosaminidases. Li B; Takegawa K; Suzuki T; Yamamoto K; Wang LX Bioorg Med Chem; 2008 Apr; 16(8):4670-5. PubMed ID: 18304822 [TBL] [Abstract][Full Text] [Related]
19. Pocket-based Lead Optimization Strategy for the Design and Synthesis of Chitinase Inhibitors. Dong Y; Hu S; Jiang X; Liu T; Ling Y; He X; Yang Q; Zhang L J Agric Food Chem; 2019 Apr; 67(13):3575-3582. PubMed ID: 30865442 [TBL] [Abstract][Full Text] [Related]
20. Virtual screening, synthesis, and bioactivity evaluation for the discovery of β-N-acetyl-D-hexosaminidase inhibitors. Dong Y; Hu S; Zhao X; He Q; Yang Q; Zhang L Pest Manag Sci; 2020 Sep; 76(9):3030-3037. PubMed ID: 32248665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]