These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 25436450)
21. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chojnacka K; Chojnacki A; Górecka H Chemosphere; 2005 Mar; 59(1):75-84. PubMed ID: 15698647 [TBL] [Abstract][Full Text] [Related]
22. Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. Sari A; Tuzen M J Hazard Mater; 2008 Dec; 160(2-3):349-55. PubMed ID: 18406520 [TBL] [Abstract][Full Text] [Related]
23. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594. Sandana Mala JG; Unni Nair B; Puvanakrishnan R J Gen Appl Microbiol; 2006 Jun; 52(3):179-86. PubMed ID: 16960334 [TBL] [Abstract][Full Text] [Related]
24. Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. Caravelli AH; Giannuzzi L; Zaritzky NE J Hazard Mater; 2008 Aug; 156(1-3):214-22. PubMed ID: 18215460 [TBL] [Abstract][Full Text] [Related]
25. Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity. Margarites AC; Volpato N; Araújo E; Cardoso LG; Bertolin TE; Colla LM; Costa JAV Environ Technol; 2017 Sep; 38(17):2209-2216. PubMed ID: 27790947 [TBL] [Abstract][Full Text] [Related]
26. The new application of biosorption properties of Enteromorpha prolifera. Michalak I; Chojnacka K Appl Biochem Biotechnol; 2010 Mar; 160(5):1540-56. PubMed ID: 19404780 [TBL] [Abstract][Full Text] [Related]
27. Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: kinetics and transmission electron microscopic study. Das SK; Guha AK J Hazard Mater; 2009 Aug; 167(1-3):685-91. PubMed ID: 19201086 [TBL] [Abstract][Full Text] [Related]
28. Biosorption and bioreduction of aqueous chromium (VI) by different Spirulina strains. Meng G; Liu J; Ma J; Liu X; Zhang F; Guo Y; Wang C; Song L FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 37475675 [TBL] [Abstract][Full Text] [Related]
29. Bioadsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanisms for chromium resistance. Pereira M; Bartolomé MC; Sánchez-Fortún S Chemosphere; 2013 Oct; 93(6):1057-63. PubMed ID: 23810518 [TBL] [Abstract][Full Text] [Related]
30. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. Gupta VK; Rastogi A J Hazard Mater; 2009 Apr; 163(1):396-402. PubMed ID: 18691812 [TBL] [Abstract][Full Text] [Related]
31. Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater. Rehman A; Zahoor A; Muneer B; Hasnain S Bull Environ Contam Toxicol; 2008 Jul; 81(1):25-9. PubMed ID: 18498008 [TBL] [Abstract][Full Text] [Related]
32. Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: kinetic studies. Gagrai MK; Das C; Golder AK Chemosphere; 2013 Oct; 93(7):1366-71. PubMed ID: 24053944 [TBL] [Abstract][Full Text] [Related]
33. Feasibility of using microalgal biomass cultured in domestic wastewater for the removal of chromium pollutants. Han X; Wong YS; Wong MH; Tam NF Water Environ Res; 2008 Jul; 80(7):647-53. PubMed ID: 18710148 [TBL] [Abstract][Full Text] [Related]
34. Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. Bayramoğlu G; Celik G; Yalçin E; Yilmaz M; Arica MY J Hazard Mater; 2005 Mar; 119(1-3):219-29. PubMed ID: 15752869 [TBL] [Abstract][Full Text] [Related]
35. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Vieira Salla AC; Margarites AC; Seibel FI; Holz LC; Brião VB; Bertolin TE; Colla LM; Costa JA Bioresour Technol; 2016 Jun; 209():133-41. PubMed ID: 26967336 [TBL] [Abstract][Full Text] [Related]
36. Efficient biosorption of chromium(VI) ion by dry Araucaria leaves. Shukla D; Vankar PS Environ Sci Pollut Res Int; 2012 Jul; 19(6):2321-8. PubMed ID: 22237508 [TBL] [Abstract][Full Text] [Related]
37. Biosorption of chromium, cadmium, and cobalt from aqueous solution by immobilized living cells of Chryseomonas luteola TEM 05. Baysal SH; Onal S; Ozdemir G Prep Biochem Biotechnol; 2009; 39(4):419-28. PubMed ID: 19739028 [TBL] [Abstract][Full Text] [Related]
38. Effect of zinc-containing systems on Spirulina platensis bioaccumulation capacity and biochemical composition. Zinicovscaia I; Cepoi L; Rudi L; Chiriac T; Grozdov D; Vergel K Environ Sci Pollut Res Int; 2021 Oct; 28(37):52216-52224. PubMed ID: 34002316 [TBL] [Abstract][Full Text] [Related]
39. Responses of Dunaliella sp. AL-1 to chromium and copper: Biochemical and physiological studies. Elleuch J; Thabet J; Ghribi I; Jabeur H; Hernández LE; Fendri I; Abdelkafi S Chemosphere; 2024 Sep; 364():143133. PubMed ID: 39168386 [TBL] [Abstract][Full Text] [Related]
40. Biosorption of chromium(VI), nickel(II) and Remazol blue by Rhodotorula muciloginosa biomass. San NO; Dönmez G Water Sci Technol; 2012; 65(3):471-7. PubMed ID: 22258677 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]