These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 25436545)
1. Tet proteins: on track towards DNA demethylation? Véron N Biomol Concepts; 2012 Oct; 3(5):395-402. PubMed ID: 25436545 [TBL] [Abstract][Full Text] [Related]
2. Structural insight into substrate preference for TET-mediated oxidation. Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525 [TBL] [Abstract][Full Text] [Related]
3. 5-hydroxymethylcytosines regulate gene expression as a passive DNA demethylation resisting epigenetic mark in proliferative somatic cells. Wei A; Zhang H; Qiu Q; Fabyanic EB; Hu P; Wu H bioRxiv; 2023 Sep; ():. PubMed ID: 37808741 [TBL] [Abstract][Full Text] [Related]
4. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Feng Y; Chen JJ; Xie NB; Ding JH; You XJ; Tao WB; Zhang X; Yi C; Zhou X; Yuan BF; Feng YQ Chem Sci; 2021 Sep; 12(34):11322-11329. PubMed ID: 34567494 [TBL] [Abstract][Full Text] [Related]
5. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109 [TBL] [Abstract][Full Text] [Related]
6. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Okashita N; Kumaki Y; Ebi K; Nishi M; Okamoto Y; Nakayama M; Hashimoto S; Nakamura T; Sugasawa K; Kojima N; Takada T; Okano M; Seki Y Development; 2014 Jan; 141(2):269-80. PubMed ID: 24335252 [TBL] [Abstract][Full Text] [Related]
7. Structure and Function of TET Enzymes. Yin X; Hu L; Xu Y Adv Exp Med Biol; 2022; 1389():239-267. PubMed ID: 36350513 [TBL] [Abstract][Full Text] [Related]
8. Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep. Jafarpour F; Hosseini SM; Ostadhosseini S; Abbasi H; Dalman A; Nasr-Esfahani MH Theriogenology; 2017 Feb; 89():86-96. PubMed ID: 28043375 [TBL] [Abstract][Full Text] [Related]
9. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793 [TBL] [Abstract][Full Text] [Related]
11. Understanding the role of ten-eleven translocation family proteins in kidney diseases. Zhang Y; Li J; Tan L; Xue J; Shi YG Biochem Soc Trans; 2024 Oct; 52(5):2203-2214. PubMed ID: 39377353 [TBL] [Abstract][Full Text] [Related]
12. TET enzymes and 5hmC epigenetic mark: new key players in carcinogenesis and progression in gynecological cancers. Zacapala-Gómez AE; Mendoza-Catalán MA; Antonio-Véjar V; Jiménez-Wences H; Ortíz-Ortíz J; Ávila-López PA; Baños-Hernández CJ; Salmerón-Bárcenas EG Eur Rev Med Pharmacol Sci; 2024 Feb; 28(3):1123-1134. PubMed ID: 38375718 [TBL] [Abstract][Full Text] [Related]
13. Single-Base Resolution Analysis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics. Neri F; Incarnato D; Krepelova A; Rapelli S; Anselmi F; Parlato C; Medana C; Dal Bello F; Oliviero S Cell Rep; 2015 Feb; 10(5):674-683. PubMed ID: 25660018 [TBL] [Abstract][Full Text] [Related]
14. 5-Hydroxymethylcytosine-mediated active demethylation is required for mammalian neuronal differentiation and function. Stoyanova E; Riad M; Rao A; Heintz N Elife; 2021 Dec; 10():. PubMed ID: 34919053 [TBL] [Abstract][Full Text] [Related]
15. TET-mediated active DNA demethylation: mechanism, function and beyond. Wu X; Zhang Y Nat Rev Genet; 2017 Sep; 18(9):517-534. PubMed ID: 28555658 [TBL] [Abstract][Full Text] [Related]
16. TET proteins and 5-methylcytosine oxidation in hematological cancers. Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Wu H; Zhang Y Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms that regulate the activities of TET proteins. Joshi K; Liu S; Breslin S J P; Zhang J Cell Mol Life Sci; 2022 Jun; 79(7):363. PubMed ID: 35705880 [TBL] [Abstract][Full Text] [Related]
19. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Caldwell BA; Liu MY; Prasasya RD; Wang T; DeNizio JE; Leu NA; Amoh NYA; Krapp C; Lan Y; Shields EJ; Bonasio R; Lengner CJ; Kohli RM; Bartolomei MS Mol Cell; 2021 Feb; 81(4):859-869.e8. PubMed ID: 33352108 [TBL] [Abstract][Full Text] [Related]
20. TET1 promotes RXRα expression and adipogenesis through DNA demethylation. Qian H; Zhao J; Yang X; Wu S; An Y; Qu Y; Li Z; Ge H; Li E; Qi W Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Jun; 1866(6):158919. PubMed ID: 33684567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]