BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25437096)

  • 1. Effect of methanol on the phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations: in quest of the biphasic effect.
    Laner M; Hünenberger PH
    J Mol Graph Model; 2015 Feb; 55():85-104. PubMed ID: 25437096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation.
    Laner M; Horta BA; Hünenberger PH
    J Mol Graph Model; 2015 Feb; 55():48-64. PubMed ID: 25437095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the cosolutes trehalose and methanol on the equilibrium and phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations.
    Laner M; Horta BA; Hünenberger PH
    Eur Biophys J; 2014 Nov; 43(10-11):517-44. PubMed ID: 25150983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-transition properties of glycerol-dipalmitate lipid bilayers investigated using molecular dynamics simulation.
    Laner M; Hünenberger PH
    J Mol Graph Model; 2015 Jun; 59():136-47. PubMed ID: 25996610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating the Transition between Gel and Liquid-Crystal Phases of Lipid Bilayers: Dependence of the Transition Temperature on the Hydration Level.
    Horta BA; de Vries AH; Hünenberger PH
    J Chem Theory Comput; 2010 Aug; 6(8):2488-500. PubMed ID: 26613501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of methanol on lipid bilayers: an atomistic investigation.
    Pinisetty D; Moldovan D; Devireddy R
    Ann Biomed Eng; 2006 Sep; 34(9):1442-51. PubMed ID: 16897422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface.
    Mansour HM; Zografi G
    Langmuir; 2007 Mar; 23(7):3809-19. PubMed ID: 17323986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulation Study of Skin Lipids: Effects of the Molar Ratio of Individual Components over a Wide Temperature Range.
    Gupta R; Rai B
    J Phys Chem B; 2015 Sep; 119(35):11643-55. PubMed ID: 26274913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers.
    Patra M; Salonen E; Terama E; Vattulainen I; Faller R; Lee BW; Holopainen J; Karttunen M
    Biophys J; 2006 Feb; 90(4):1121-35. PubMed ID: 16326895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers.
    Leekumjorn S; Sum AK
    J Phys Chem B; 2007 May; 111(21):6026-33. PubMed ID: 17488110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding thermal phases in atomic detail by all-atom molecular-dynamics simulation of a phospholipid bilayer.
    Ogata K; Uchida W; Nakamura S
    J Phys Chem B; 2014 Dec; 118(49):14353-65. PubMed ID: 25383505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand partitioning into lipid bilayer membranes under high pressure: Implication of variation in phase-transition temperatures.
    Matsuki H; Kato K; Okamoto H; Yoshida S; Goto M; Tamai N; Kaneshina S
    Chem Phys Lipids; 2017 Dec; 209():9-18. PubMed ID: 29042237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of phase transition temperatures for atomistic models of lipids from temperature-dependent stripe domain growth kinetics.
    Coppock PS; Kindt JT
    J Phys Chem B; 2010 Sep; 114(35):11468-73. PubMed ID: 20690693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of the interactions of DMSO, mono- and polyhydroxylated cryosolvents with a hydrated phospholipid bilayer.
    Malajczuk CJ; Hughes ZE; Mancera RL
    Biochim Biophys Acta; 2013 Sep; 1828(9):2041-55. PubMed ID: 23707690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High pressure effect on phase transition behavior of lipid bilayers.
    Lai K; Wang B; Zhang Y; Zhang Y
    Phys Chem Chem Phys; 2012 Apr; 14(16):5744-52. PubMed ID: 22418786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayer phase transitions of N-methylated dioleoylphosphatidylethanolamines under high pressure.
    Kusube M; Goto M; Tamai N; Matsuki H; Kaneshina S
    Chem Phys Lipids; 2006 Jul; 142(1-2):94-102. PubMed ID: 16620796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cholesterol concentration on the interaction of cytarabine with lipid membranes: a molecular dynamics simulation study.
    Karami L; Jalili S
    J Biomol Struct Dyn; 2015; 33(6):1254-68. PubMed ID: 25068451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic copolymers change the nature of the ordered-to-disordered phase transition of lipid membranes from discontinuous to continuous.
    Zaki AM; Carbone P
    Phys Chem Chem Phys; 2019 Jun; 21(25):13746-13757. PubMed ID: 31209450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation.
    Kong X; Qin S; Lu D; Liu Z
    Phys Chem Chem Phys; 2014 May; 16(18):8434-40. PubMed ID: 24668218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.