BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25437243)

  • 1. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees.
    Takei M; Yoshida S; Kawai T; Hasegawa M; Suzuki Y
    J Insect Physiol; 2015 Jan; 72():43-51. PubMed ID: 25437243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic characterization of gall tissue of Japanese elm tree (Ulmus davidiana var. japonica) induced by the aphid Tetraneura nigriabdominalis.
    Takei M; Ito S; Tanaka K; Ishige T; Suzuki Y
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1069-1077. PubMed ID: 28164745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit.
    Tooker JF; Helms AM
    J Chem Ecol; 2014 Jul; 40(7):742-53. PubMed ID: 25027764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytohormones and willow gall induction by a gall-inducing sawfly.
    Yamaguchi H; Tanaka H; Hasegawa M; Tokuda M; Asami T; Suzuki Y
    New Phytol; 2012 Oct; 196(2):586-595. PubMed ID: 22913630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Tetraneura ulmi L. galling process on the activity of amino acid decarboxylases and the content of biogenic amines in Siberian elm tissues.
    Kmieć K; Sempruch C; Chrzanowski G; Czerniewicz P
    Bull Entomol Res; 2018 Feb; 108(1):69-76. PubMed ID: 28514972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gall-inducing caterpillar species increases essential fatty acid content of its host plant without concomitant increases in phytohormone levels.
    Tooker JF; De Moraes CM
    Mol Plant Microbe Interact; 2009 May; 22(5):551-9. PubMed ID: 19348573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.
    Oliveira DC; Isaias RMS; Fernandes GW; Ferreira BG; Carneiro RGS; Fuzaro L
    J Insect Physiol; 2016 Jan; 84():103-113. PubMed ID: 26620152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls.
    Rand K; Bar E; Ari MB; Davidovich-Rikanati R; Dudareva N; Inbar M; Lewinsohn E
    J Chem Ecol; 2017 Feb; 43(2):143-152. PubMed ID: 28108840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors.
    Kroes A; van Loon JJ; Dicke M
    Plant Cell Physiol; 2015 Jan; 56(1):98-106. PubMed ID: 25339349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new perspective on plant defense against foliar gall-forming aphids through activation of the fruit abscission pathway.
    Hua J; Liu J; Zhou W; Ma C; Luo S
    Plant Physiol Biochem; 2023 Mar; 196():1046-1054. PubMed ID: 36907012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge.
    Tanaka Y; Okada K; Asami T; Suzuki Y
    Biosci Biotechnol Biochem; 2013; 77(9):1942-8. PubMed ID: 24018692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and Histologic Adaptation of Horned Gall Induced by the Aphid
    Lu Q; Chen X; Yang Z; Bashir NH; Liu J; Cui Y; Shao S; Chen MS; Chen H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid.
    Body MJA; Zinkgraf MS; Whitham TG; Lin CH; Richardson RA; Appel HM; Schultz JC
    Mol Plant Microbe Interact; 2019 Jun; 32(6):654-672. PubMed ID: 30520677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid.
    Veselov D; Langhans M; Hartung W; Aloni R; Feussner I; Götz C; Veselova S; Schlomski S; Dickler C; Bächmann K; Ullrich CI
    Planta; 2003 Jan; 216(3):512-22. PubMed ID: 12520344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the differential gene expression of elm leaves fed on by Tetraneura akinire Sasaki.
    Lu HB; Jin LP; Wei D; Huang ZH
    Genes Genomics; 2019 Dec; 41(12):1505-1516. PubMed ID: 31587147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetraneura ulmi (Hemiptera: Eriosomatinae) Induces Oxidative Stress and Alters Antioxidant Enzyme Activities in Elm Leaves.
    Kmiec K; Rubinowska K; Golan K
    Environ Entomol; 2018 Aug; 47(4):840-847. PubMed ID: 29672728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-repellent plant surface structure induced by gall-forming insects for waste management.
    Uematsu K; Kutsukake M; Fukatsu T
    Biol Lett; 2018 Oct; 14(10):. PubMed ID: 30333261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays.
    Tzin V; Fernandez-Pozo N; Richter A; Schmelz EA; Schoettner M; Schäfer M; Ahern KR; Meihls LN; Kaur H; Huffaker A; Mori N; Degenhardt J; Mueller LA; Jander G
    Plant Physiol; 2015 Nov; 169(3):1727-43. PubMed ID: 26378100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chestnut species and jasmonic acid treatment influence development and community interactions of galls produced by the Asian chestnut gall wasp, Dryocosmus kuriphilus.
    Cooper WR; Rieske LK
    J Insect Sci; 2011; 11():140. PubMed ID: 22233098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector.
    Casteel CL; De Alwis M; Bak A; Dong H; Whitham SA; Jander G
    Plant Physiol; 2015 Sep; 169(1):209-18. PubMed ID: 26091820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.