These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25437243)

  • 21. The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia.
    Inbar M; Wink M; Wool D
    Mol Phylogenet Evol; 2004 Aug; 32(2):504-11. PubMed ID: 15223033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.
    Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG
    Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphometric analysis of young petiole galls on the narrow-leaf cottonwood, Populus angustifolia, by the sugarbeet root aphid, Pemphigus betae.
    Richardson RA; Body M; Warmund MR; Schultz JC; Appel HM
    Protoplasma; 2017 Jan; 254(1):203-216. PubMed ID: 26739691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel family of secreted insect proteins linked to plant gall development.
    Korgaonkar A; Han C; Lemire AL; Siwanowicz I; Bennouna D; Kopec RE; Andolfatto P; Shigenobu S; Stern DL
    Curr Biol; 2021 May; 31(9):1836-1849.e12. PubMed ID: 33657407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Variation of Selected Physiological Parameters in Elm Leaves (
    Kmieć K; Kot I; Rubinowska K; Górska-Drabik E; Golan K; Sytykiewicz H
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abscisic Acid-Cytokinin Antagonism Modulates Resistance Against Pseudomonas syringae in Tobacco.
    Großkinsky DK; van der Graaff E; Roitsch T
    Phytopathology; 2014 Dec; 104(12):1283-8. PubMed ID: 24941328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Galling aphids: specialization, biological complexity, and variation.
    Wool D
    Annu Rev Entomol; 2004; 49():175-92. PubMed ID: 14651461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The transcriptional landscape of insect galls: psyllid (Hemiptera) gall formation in Hawaiian Metrosideros polymorpha (Myrtaceae).
    Bailey S; Percy DM; Hefer CA; Cronk QC
    BMC Genomics; 2015 Nov; 16():943. PubMed ID: 26572921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local and systemic hormonal responses in pepper (Capsicum annuum L.) leaves under green peach aphid (Myzus persicae Sulzer) infestation.
    Florencio-Ortiz V; Novák O; Casas JL
    J Plant Physiol; 2018 Dec; 231():356-363. PubMed ID: 30388675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological response of Populus nigra 'Italica' to galling aphids feeding.
    Kmieć K; Kot I
    Plant Biol (Stuttg); 2021 Jul; 23(4):675-679. PubMed ID: 33780123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.
    Giron D; Huguet E; Stone GN; Body M
    J Insect Physiol; 2016 Jan; 84():70-89. PubMed ID: 26723843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gall-forming aphids are protected (and benefit) from defoliating caterpillars: the role of plant-mediated mechanisms.
    Kurzfeld-Zexer L; Inbar M
    BMC Ecol Evol; 2021 Jun; 21(1):124. PubMed ID: 34144674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae).
    de Oliveira DC; Isaias RM
    Rev Biol Trop; 2009; 57(1-2):293-302. PubMed ID: 19637708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.
    Pineda A; Soler R; Weldegergis BT; Shimwela MM; VAN Loon JJ; Dicke M
    Plant Cell Environ; 2013 Feb; 36(2):393-404. PubMed ID: 22812443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense.
    Zhang H; Dugé de Bernonville T; Body M; Glevarec G; Reichelt M; Unsicker S; Bruneau M; Renou JP; Huguet E; Dubreuil G; Giron D
    J Insect Physiol; 2016 Jan; 84():114-127. PubMed ID: 26068004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors.
    Mauck KE; De Moraes CM; Mescher MC
    Plant Cell Environ; 2014 Jun; 37(6):1427-39. PubMed ID: 24329574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Localization of Phytohormones within the Gall-inducing Insect
    Ponce GE; Fuse M; Chan A; Connor EF
    Arthropod Plant Interact; 2021 Jun; 15(3):375-385. PubMed ID: 34149963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gall induction may benefit host plant: a case of a gall wasp and eucalyptus tree.
    Rocha S; Branco M; Boas LV; Almeida MH; Protasov A; Mendel Z
    Tree Physiol; 2013 Apr; 33(4):388-97. PubMed ID: 23513035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macro- and Microscopic Analyses of Anatomical Structures of Chinese Gallnuts and Their Functional Adaptation.
    Lu Q; Chen H; Wang C; Yang ZX; Lü P; Chen MS; Chen XM
    Sci Rep; 2019 Mar; 9(1):5193. PubMed ID: 30914739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways.
    Naseem M; Kaltdorf M; Dandekar T
    J Exp Bot; 2015 Aug; 66(16):4885-96. PubMed ID: 26109575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.