These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 2543733)
1. Protons resolve dual effects of calcium on miniature end-plate potential frequency at frog neuromuscular junctions. Talbot PA J Gen Physiol; 1989 Apr; 93(4):745-60. PubMed ID: 2543733 [TBL] [Abstract][Full Text] [Related]
2. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length. Grinnell AD; Pawson PA J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068 [TBL] [Abstract][Full Text] [Related]
3. Intraterminal Ca(2+) and spontaneous transmitter release at the frog neuromuscular junction. Angleson JK; Betz WJ J Neurophysiol; 2001 Jan; 85(1):287-94. PubMed ID: 11152728 [TBL] [Abstract][Full Text] [Related]
4. Potentiation of aminoglycoside-induced neuromuscular blockade by protons in vitro and in vivo. Talbot PA J Pharmacol Exp Ther; 1987 May; 241(2):686-94. PubMed ID: 3033223 [TBL] [Abstract][Full Text] [Related]
5. On the effect of calcium on the frequency of miniature end-plate potentials at the frog neuromuscular junction. Matthews G; Wickelgren WO J Physiol; 1977 Mar; 266(1):91-101. PubMed ID: 192883 [TBL] [Abstract][Full Text] [Related]
6. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction. Zengel JE; Magleby KL J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429 [TBL] [Abstract][Full Text] [Related]
7. Modulation of Ca(2+)-dependent and Ca(2+)-independent miniature endplate potentials by phorbol ester and adenosine in frog. Searl TJ; Silinsky EM Br J Pharmacol; 2005 Aug; 145(7):954-62. PubMed ID: 15880138 [TBL] [Abstract][Full Text] [Related]
8. Endotoxin alters spontaneous transmitter release at the frog neuromuscular junction. Person RJ J Neurosci Res; 1977; 3(1):63-72. PubMed ID: 23437 [TBL] [Abstract][Full Text] [Related]
9. Nature of increase in quantal release by the thallous ion at frog end plates with and without nerve stimulation. Talbot PA J Gen Physiol; 1992 Nov; 100(5):881-901. PubMed ID: 1335478 [TBL] [Abstract][Full Text] [Related]
10. Changes in miniature end-plate currents due to high potassium and calcium at the frog neuromuscular junction. Glavinović MI Synapse; 1988; 2(6):636-43. PubMed ID: 3264941 [TBL] [Abstract][Full Text] [Related]
11. Extracellular calcium-dependent and -independent effects of methylmercury on spontaneous and potassium-evoked release of acetylcholine at the neuromuscular junction. Atchison WD J Pharmacol Exp Ther; 1986 May; 237(2):672-80. PubMed ID: 3084765 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the effects of trimethadione and its primary metabolite dimethadione on neuromuscular function and the effects of altered pH on the actions of dimethadione. Alderdice MT; McMillan JE J Pharmacol Exp Ther; 1982 Jun; 221(3):547-51. PubMed ID: 6283057 [TBL] [Abstract][Full Text] [Related]
13. Inositol derivatives modulate spontaneous transmitter release at the frog neuromuscular junction. Brailoiu E; Miyamoto MD; Dun NJ Neuropharmacology; 2003 Oct; 45(5):691-701. PubMed ID: 12941382 [TBL] [Abstract][Full Text] [Related]
14. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions. Kita H; Narita K; Van der Kloot W Brain Res; 1981 Jan; 205(1):111-21. PubMed ID: 6258705 [TBL] [Abstract][Full Text] [Related]
15. The form of sodium-calcium competition at the frog myoneural junction. Birks RI; Burstyn PG; Firth DR J Gen Physiol; 1968 Dec; 52(6):887-907. PubMed ID: 4301843 [TBL] [Abstract][Full Text] [Related]
16. The effects of pH changes on the frequency of miniature end-plate potentials at the frog neuromuscular junction. Cohen I; Van Der Kloot W J Physiol; 1976 Nov; 262(2):401-14. PubMed ID: 11340 [TBL] [Abstract][Full Text] [Related]
17. Competition between sodium and calcium ions in transmitter release at mammalian neuromuscular junctions. Gage PW; Quastel DM J Physiol; 1966 Jul; 185(1):95-123. PubMed ID: 5965900 [TBL] [Abstract][Full Text] [Related]
18. Modification by lithium of transmitter release at the neuromuscular junction of the frog. Branisteanu DD; Volle RL J Pharmacol Exp Ther; 1975 Aug; 194(2):362-72. PubMed ID: 239225 [TBL] [Abstract][Full Text] [Related]
19. Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals. Flink MT; Atchison WD J Pharmacol Exp Ther; 2003 May; 305(2):646-52. PubMed ID: 12606686 [TBL] [Abstract][Full Text] [Related]
20. Differential effects of the anticonvulsants phenobarbital, ethosuximide and carbamazepine on neuromuscular transmission. Alderdice MT; Trommer BA J Pharmacol Exp Ther; 1980 Oct; 215(1):92-6. PubMed ID: 6256522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]