These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 25437371)
1. Electrochemical detection of protein based on hybridization chain reaction-assisted formation of copper nanoparticles. Zhao J; Hu S; Cao Y; Zhang B; Li G Biosens Bioelectron; 2015 Apr; 66():327-31. PubMed ID: 25437371 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical detection of protein by using magnetic graphene-based target enrichment and copper nanoparticles-assisted signal amplification. Zhao J; Lv Y; Kang M; Wang K; Xiang Y Analyst; 2015 Nov; 140(22):7818-22. PubMed ID: 26462600 [TBL] [Abstract][Full Text] [Related]
3. An electrochemical aptasensor for thrombin detection based on the recycling of exonuclease III and double-stranded DNA-templated copper nanoparticles assisted signal amplification. Zhao J; Xin M; Cao Y; Yin Y; Shu Y; Ma W Anal Chim Acta; 2015 Feb; 860():23-8. PubMed ID: 25682243 [TBL] [Abstract][Full Text] [Related]
4. A ratiometric colorimetric detection of the folate receptor based on terminal protection of small-molecule-linked DNA. Zhu Y; Wang G; Sha L; Qiu Y; Jiang H; Zhang X Analyst; 2015 Feb; 140(4):1260-4. PubMed ID: 25553613 [TBL] [Abstract][Full Text] [Related]
5. Amperometric aptasensor for thrombin detection using enzyme-mediated direct electrochemistry and DNA-based signal amplification strategy. Bai L; Chai Y; Yuan R; Yuan Y; Xie S; Jiang L Biosens Bioelectron; 2013 Dec; 50():325-30. PubMed ID: 23880107 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive electrochemical sensor for Hg(2+) by using hybridization chain reaction coupled with Ag@Au core-shell nanoparticles. Li Z; Miao X; Xing K; Peng X; Zhu A; Ling L Biosens Bioelectron; 2016 Jun; 80():339-343. PubMed ID: 26852203 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical detection of C-reactive protein using Copper nanoparticles and hybridization chain reaction amplifying signal. Zhang J; Zhang W; Guo J; Wang J; Zhang Y Anal Biochem; 2017 Dec; 539():1-7. PubMed ID: 28965840 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Zhang S; Zhong H; Ding C Anal Chem; 2008 Oct; 80(19):7206-12. PubMed ID: 18759495 [TBL] [Abstract][Full Text] [Related]
9. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Wang WJ; Li JJ; Rui K; Gai PP; Zhang JR; Zhu JJ Anal Chem; 2015 Mar; 87(5):3019-26. PubMed ID: 25669135 [TBL] [Abstract][Full Text] [Related]
10. Dendrimer-encapsulated copper as a novel oligonucleotides label for sensitive electrochemical stripping detection of DNA hybridization. Gao H; Jiang X; Dong YJ; Tang WX; Hou C; Zhu NN Biosens Bioelectron; 2013 Oct; 48():210-5. PubMed ID: 23685561 [TBL] [Abstract][Full Text] [Related]
11. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection. Ni J; Wang Q; Yang W; Zhao M; Zhang Y; Guo L; Qiu B; Lin Z; Yang HH Biosens Bioelectron; 2016 Dec; 86():496-501. PubMed ID: 27442079 [TBL] [Abstract][Full Text] [Related]
12. Gold nanoparticle-based exonuclease III signal amplification for highly sensitive colorimetric detection of folate receptor. Yang X; Gao Z Nanoscale; 2014 Mar; 6(6):3055-8. PubMed ID: 24500117 [TBL] [Abstract][Full Text] [Related]
13. Design of one-to-one recognition triple Au nanoparticles DNA probe and its application in the electrochemical DNA biosensor. Zhong H; Lei X; Hun X; Zhang S Chem Commun (Camb); 2009 Dec; (45):6958-60. PubMed ID: 19904360 [TBL] [Abstract][Full Text] [Related]
14. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing. Chen Z; Liu Y; Xin C; Zhao J; Liu S Biosens Bioelectron; 2018 Aug; 113():1-8. PubMed ID: 29709776 [TBL] [Abstract][Full Text] [Related]
15. A new electrochemical method for the detection of cancer cells based on small molecule-linked DNA. Zhao J; Zhu L; Guo C; Gao T; Zhu X; Li G Biosens Bioelectron; 2013 Nov; 49():329-33. PubMed ID: 23796531 [TBL] [Abstract][Full Text] [Related]
16. DNA-templated copper nanoparticles as signalling probe for electrochemical determination of microRNA-222. Wang Y; Meng W; Chen X; Zhang Y Mikrochim Acta; 2019 Dec; 187(1):4. PubMed ID: 31797053 [TBL] [Abstract][Full Text] [Related]
17. Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Liu L; Chang Y; Xia N; Peng P; Zhang L; Jiang M; Zhang J; Liu L Biosens Bioelectron; 2017 Aug; 94():235-242. PubMed ID: 28285201 [TBL] [Abstract][Full Text] [Related]
18. Exonuclease III-based and gold nanoparticle-assisted DNA detection with dual signal amplification. Fan Q; Zhao J; Li H; Zhu L; Li G Biosens Bioelectron; 2012 Mar; 33(1):211-5. PubMed ID: 22305442 [TBL] [Abstract][Full Text] [Related]
19. Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction. Yuan YH; Chi BZ; Wen SH; Liang RP; Li ZM; Qiu JD Biosens Bioelectron; 2018 Apr; 102():211-216. PubMed ID: 29145074 [TBL] [Abstract][Full Text] [Related]
20. A one-step, electrochemical biosensing strategy that is based on transport of signaling CdS nanoparticles controlled by biomolecules. Won BY; Shin S; Cho DY; Park HG Biosens Bioelectron; 2013 Apr; 42():603-7. PubMed ID: 23261696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]