These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 25437433)
1. Electrochemical determination of low levels of uranyl by a vibrating gold microelectrode. Peled Y; Krent E; Tal N; Tobias H; Mandler D Anal Chem; 2015 Jan; 87(1):768-76. PubMed ID: 25437433 [TBL] [Abstract][Full Text] [Related]
2. Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Salaün P; Planer-Friedrich B; van den Berg CM Anal Chim Acta; 2007 Mar; 585(2):312-22. PubMed ID: 17386680 [TBL] [Abstract][Full Text] [Related]
3. Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode. Gibbon-Walsh K; Salaün P; van den Berg CM Anal Chim Acta; 2012 Jan; 710():50-7. PubMed ID: 22123111 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical detection of low concentrations of mercury in water using gold nanoparticles. Ratner N; Mandler D Anal Chem; 2015; 87(10):5148-55. PubMed ID: 25892337 [TBL] [Abstract][Full Text] [Related]
5. Development of a carbon paste electrode containing benzo-15-crown-5 for trace determination of the uranyl ion by using a voltammetric technique. Agrahari SK; Kumar SD; Srivastava AK J AOAC Int; 2009; 92(1):241-7. PubMed ID: 19382582 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric peroxidase mimetic assay for uranyl detection in sea water. Zhang D; Chen Z; Omar H; Deng L; Khashab NM ACS Appl Mater Interfaces; 2015 Mar; 7(8):4589-94. PubMed ID: 25658750 [TBL] [Abstract][Full Text] [Related]
7. An adsorptive stripping voltammetry procedure for ultra-trace determination of U(VI) using double accumulation step on two lead-film working electrodes. Korolczuk M; Grabarczyk M; Rutyna I Talanta; 2014 Dec; 130():342-6. PubMed ID: 25159419 [TBL] [Abstract][Full Text] [Related]
8. Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device. Huang Y; Fang L; Zhu Z; Ma Y; Zhou L; Chen X; Xu D; Yang C Biosens Bioelectron; 2016 Nov; 85():496-502. PubMed ID: 27209576 [TBL] [Abstract][Full Text] [Related]
9. Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode. Punrat E; Chuanuwatanakul S; Kaneta T; Motomizu S; Chailapakul O Talanta; 2013 Nov; 116():1018-25. PubMed ID: 24148510 [TBL] [Abstract][Full Text] [Related]
10. Cathodic adsorptive stripping voltammetric determination of trace amounts of uranium (VI) based on its complex with Chromazorul-S. Mohadesi A; Hosseinzadeh L; Abbasi S; Esfandyarpour M J AOAC Int; 2009; 92(3):927-32. PubMed ID: 19610387 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution. Ikeda A; Hennig C; Tsushima S; Takao K; Ikeda Y; Scheinost AC; Bernhard G Inorg Chem; 2007 May; 46(10):4212-9. PubMed ID: 17417836 [TBL] [Abstract][Full Text] [Related]
12. Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode. Salaün P; Gibbon-Walsh KB; Alves GM; Soares HM; van den Berg CM Anal Chim Acta; 2012 Oct; 746():53-62. PubMed ID: 22975180 [TBL] [Abstract][Full Text] [Related]
13. Selective Electrochemical Separation and Recovery of Uranium from Mixture of Uranium(VI) and Lanthanide(III) Ions in Aqueous Medium. Agarwal R; Sharma MK Inorg Chem; 2018 Sep; 57(17):10984-10992. PubMed ID: 30102531 [TBL] [Abstract][Full Text] [Related]
14. Arsenic speciation in natural waters by cathodic stripping voltammetry. Gibbon-Walsh K; Salaün P; van den Berg CM Anal Chim Acta; 2010 Mar; 662(1):1-8. PubMed ID: 20152258 [TBL] [Abstract][Full Text] [Related]
15. Determination of As(III) by anodic stripping voltammetry following double deposition and stripping steps at two gold working electrodes. Korolczuk M; Ochab M; Rutyna I Talanta; 2015 Nov; 144():517-21. PubMed ID: 26452856 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles. Carrera P; Espinoza-Montero PJ; Fernández L; Romero H; Alvarado J Talanta; 2017 May; 166():198-206. PubMed ID: 28213223 [TBL] [Abstract][Full Text] [Related]
17. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Zhang L; Jiang X; Wang E; Dong S Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961 [TBL] [Abstract][Full Text] [Related]
18. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Jena BK; Raj CR Anal Chem; 2008 Jul; 80(13):4836-44. PubMed ID: 18444693 [TBL] [Abstract][Full Text] [Related]
19. Sulfide determination in hydrothermal seawater samples using a vibrating gold micro-wire electrode in conjunction with stripping chronopotentiometry. Aumond V; Waeles M; Salaün P; Gibbon-Walsh K; van den Berg CM; Sarradin PM; Riso RD Anal Chim Acta; 2012 Nov; 753():42-7. PubMed ID: 23107135 [TBL] [Abstract][Full Text] [Related]
20. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations. Domingos RF; Carreira S; Galceran J; Salaün P; Pinheiro JP Anal Chim Acta; 2016 May; 920():29-36. PubMed ID: 27114220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]