BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 25437436)

  • 1. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Nat Methods; 2015 Jan; 12(1):71-8. PubMed ID: 25437436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted DNase Hi-C.
    Duan Z
    Methods Mol Biol; 2021; 2157():65-83. PubMed ID: 32820399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays.
    Sabo PJ; Kuehn MS; Thurman R; Johnson BE; Johnson EM; Cao H; Yu M; Rosenzweig E; Goldy J; Haydock A; Weaver M; Shafer A; Lee K; Neri F; Humbert R; Singer MA; Richmond TA; Dorschner MO; McArthur M; Hawrylycz M; Green RD; Navas PA; Noble WS; Stamatoyannopoulos JA
    Nat Methods; 2006 Jul; 3(7):511-8. PubMed ID: 16791208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome.
    Xi H; Shulha HP; Lin JM; Vales TR; Fu Y; Bodine DM; McKay RD; Chenoweth JG; Tesar PJ; Furey TS; Ren B; Weng Z; Crawford GE
    PLoS Genet; 2007 Aug; 3(8):e136. PubMed ID: 17708682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS).
    Crawford GE; Holt IE; Whittle J; Webb BD; Tai D; Davis S; Margulies EH; Chen Y; Bernat JA; Ginsburg D; Zhou D; Luo S; Vasicek TJ; Daly MJ; Wolfsberg TG; Collins FS
    Genome Res; 2006 Jan; 16(1):123-31. PubMed ID: 16344561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals.
    Chen A; Chen D; Chen Y
    Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of functional noncoding elements by digital analysis of chromatin structure.
    Sabo PJ; Hawrylycz M; Wallace JC; Humbert R; Yu M; Shafer A; Kawamoto J; Hall R; Mack J; Dorschner MO; McArthur M; Stamatoyannopoulos JA
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16837-42. PubMed ID: 15550541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping regulatory elements by DNaseI hypersensitivity chip (DNase-Chip).
    Shibata Y; Crawford GE
    Methods Mol Biol; 2009; 556():177-90. PubMed ID: 19488879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput localization of functional elements by quantitative chromatin profiling.
    Dorschner MO; Hawrylycz M; Humbert R; Wallace JC; Shafer A; Kawamoto J; Mack J; Hall R; Goldy J; Sabo PJ; Kohli A; Li Q; McArthur M; Stamatoyannopoulos JA
    Nat Methods; 2004 Dec; 1(3):219-25. PubMed ID: 15782197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iteratively improving Hi-C experiments one step at a time.
    Golloshi R; Sanders JT; McCord RP
    Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale mapping of DNase I hypersensitivity.
    John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA
    Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project.
    Siggens L; Ekwall K
    J Intern Med; 2014 Sep; 276(3):201-14. PubMed ID: 24605849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Three-dimensional genome organization: a lesson from the Polycomb-Group proteins].
    Bantignies F
    Biol Aujourdhui; 2013; 207(1):19-31. PubMed ID: 23694722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open chromatin in plant genomes.
    Zhang W; Zhang T; Wu Y; Jiang J
    Cytogenet Genome Res; 2014; 143(1-3):18-27. PubMed ID: 24923879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression.
    Khalil AM; Guttman M; Huarte M; Garber M; Raj A; Rivea Morales D; Thomas K; Presser A; Bernstein BE; van Oudenaarden A; Regev A; Lander ES; Rinn JL
    Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11667-72. PubMed ID: 19571010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin.
    Kodama Y; Nagaya S; Shinmyo A; Kato K
    Plant Cell Physiol; 2007 Mar; 48(3):459-70. PubMed ID: 17283013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A streamlined tethered chromosome conformation capture protocol.
    Gabdank I; Ramakrishnan S; Villeneuve AM; Fire AZ
    BMC Genomics; 2016 Apr; 17():274. PubMed ID: 27036078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.