These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 2543752)
1. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Fox G; Parry NR; Barnett PV; McGinn B; Rowlands DJ; Brown F J Gen Virol; 1989 Mar; 70 ( Pt 3)():625-37. PubMed ID: 2543752 [TBL] [Abstract][Full Text] [Related]
2. Antigenic properties and population stability of a foot-and-mouth disease virus with an altered Arg-Gly-Asp receptor-recognition motif. Ruiz-Jarabo CM; Sevilla N; Dávila M; Gómez-Mariano G; Baranowski E; Domingo E J Gen Virol; 1999 Aug; 80 ( Pt 8)():1899-1909. PubMed ID: 10466785 [TBL] [Abstract][Full Text] [Related]
3. [Is the Arg-Gly-Asp sequence the site for foot-and-mouth disease virus binding with cell receptor?]. Surovoĭ AIu; Ivanov VT; Chepurkin AV; Ivaniushchenkov VN; Driagalin NN Bioorg Khim; 1988 Jul; 14(7):965-8. PubMed ID: 2847760 [TBL] [Abstract][Full Text] [Related]
4. A recombinant, arginine-glycine-aspartic acid (RGD) motif from foot-and-mouth disease virus binds mammalian cells through vitronectin and, to a lower extent, fibronectin receptors. Villaverde A; Feliu JX; Harbottle RP; Benito A; Coutelle C Gene; 1996 Nov; 180(1-2):101-6. PubMed ID: 8973352 [TBL] [Abstract][Full Text] [Related]
5. RGD-containing peptides of VP1 of foot-and-mouth disease virus (FMDV) prevent virus infection in vitro. Liebermann H; Dölling R; Schmidt D; Thalmann G Acta Virol; 1991 Jan; 35(1):90-3. PubMed ID: 1683122 [TBL] [Abstract][Full Text] [Related]
6. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Mason PW; Rieder E; Baxt B Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1932-6. PubMed ID: 8127909 [TBL] [Abstract][Full Text] [Related]
7. Neutralizing epitopes of type O foot-and-mouth disease virus. II. Mapping three conformational sites with synthetic peptide reagents. Parry NR; Barnett PV; Ouldridge EJ; Rowlands DJ; Brown F J Gen Virol; 1989 Jun; 70 ( Pt 6)():1493-503. PubMed ID: 2471812 [TBL] [Abstract][Full Text] [Related]
8. Antibody and host cell recognition of foot-and-mouth disease virus (serotype C) cleaved at the Arg-Gly-Asp (RGD) motif: a structural interpretation. Hernández J; Valero ML; Andreu D; Domingo E; Mateu MG J Gen Virol; 1996 Feb; 77 ( Pt 2 )():257-64. PubMed ID: 8627229 [TBL] [Abstract][Full Text] [Related]
9. Antigenicity and immunogenicity of synthetic peptides of foot-and-mouth disease virus. Meloen RH; Puyk WC; Meijer DJ; Lankhof H; Posthumus WP; Schaaper WM J Gen Virol; 1987 Feb; 68 ( Pt 2)():305-14. PubMed ID: 2434606 [TBL] [Abstract][Full Text] [Related]
10. Use of substituted and tandem-repeated peptides to probe the relevance of the highly conserved RGD tripeptide in the immune response against foot-and-mouth disease virus. Novella IS; Borrego B; Mateu MG; Domingo E; Giralt E; Andreu D FEBS Lett; 1993 Sep; 330(3):253-9. PubMed ID: 7690714 [TBL] [Abstract][Full Text] [Related]
11. The effect of peptides containing the arginine-glycine-aspartic acid sequence on the adsorption of foot-and-mouth disease virus to tissue culture cells. Baxt B; Becker Y Virus Genes; 1990 Jun; 4(1):73-83. PubMed ID: 2168107 [TBL] [Abstract][Full Text] [Related]
12. RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. Roivainen M; Hyypiä T; Piirainen L; Kalkkinen N; Stanway G; Hovi T J Virol; 1991 Sep; 65(9):4735-40. PubMed ID: 1870199 [TBL] [Abstract][Full Text] [Related]
13. Delineation of a neutralizing subregion within the immunodominant epitope (GH loop) of foot-and-mouth disease virus VP1 which does not contain the RGD motif. Brown F; Benkirane N; Limal D; Halimi H; Newman JF; Van Regenmortel MH; Briand JP; Muller S Vaccine; 1999 Aug; 18(1-2):50-6. PubMed ID: 10501234 [TBL] [Abstract][Full Text] [Related]
14. Host cell selection of antigenic variants of foot-and-mouth disease virus. Bolwell C; Brown AL; Barnett PV; Campbell RO; Clarke BE; Parry NR; Ouldridge EJ; Brown F; Rowlands DJ J Gen Virol; 1989 Jan; 70 ( Pt 1)():45-57. PubMed ID: 2471782 [TBL] [Abstract][Full Text] [Related]
15. A protective anti-peptide antibody against the immunodominant site of the A24 Cruzeiro strain of foot-and-mouth disease virus and its reactivity with other subtype viruses containing the same minimum binding sequence. Barnett PV; Pullen L; Staple RF; Lee LJ; Butcher R; Parkinson D; Doel TR J Gen Virol; 1996 May; 77 ( Pt 5)():1011-8. PubMed ID: 8609466 [TBL] [Abstract][Full Text] [Related]
16. Foot-and-mouth disease virus can utilize the C-terminal extension of coxsackievirus A9 VP1 for cell infection. Leippert M; Pfaff E J Gen Virol; 2001 Jul; 82(Pt 7):1703-1711. PubMed ID: 11413382 [TBL] [Abstract][Full Text] [Related]
18. Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. Xie QC; McCahon D; Crowther JR; Belsham GJ; McCullough KC J Gen Virol; 1987 Jun; 68 ( Pt 6)():1637-47. PubMed ID: 2438378 [TBL] [Abstract][Full Text] [Related]
19. Point mutations within the betaG-betaH loop of foot-and-mouth disease virus O1K affect virus attachment to target cells. Leippert M; Beck E; Weiland F; Pfaff E J Virol; 1997 Feb; 71(2):1046-51. PubMed ID: 8995624 [TBL] [Abstract][Full Text] [Related]
20. Evidence that Equine rhinitis A virus VP1 is a target of neutralizing antibodies and participates directly in receptor binding. Warner S; Hartley CA; Stevenson RA; Ficorilli N; Varrasso A; Studdert MJ; Crabb BS J Virol; 2001 Oct; 75(19):9274-81. PubMed ID: 11533189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]