These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25437851)

  • 41. Spatially controlled SERS patterning using photoinduced disassembly of gelated gold nanoparticle aggregates.
    Park JS; Yoon JH; Yoon S
    Langmuir; 2010 Dec; 26(23):17808-11. PubMed ID: 21043462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties.
    Blakey I; Merican Z; Thurecht KJ
    Langmuir; 2013 Jul; 29(26):8266-74. PubMed ID: 23751158
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quasi-isotropic surface plasmon polariton generation through near-field coupling to a penrose pattern of silver nanoparticles.
    Verre R; Antosiewicz TJ; Svedendahl M; Lodewijks K; Shegai T; Käll M
    ACS Nano; 2014 Sep; 8(9):9286-94. PubMed ID: 25182843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Operando Studies of the Electrochemical Dissolution of Silver Nanoparticles in Nitrate Solutions Observed With Hyperspectral Dark-Field Microscopy.
    Wonner K; Rurainsky C; Tschulik K
    Front Chem; 2019; 7():912. PubMed ID: 32010665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gold nanoparticles in biology: beyond toxicity to cellular imaging.
    Murphy CJ; Gole AM; Stone JW; Sisco PN; Alkilany AM; Goldsmith EC; Baxter SC
    Acc Chem Res; 2008 Dec; 41(12):1721-30. PubMed ID: 18712884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Near field of strongly coupled plasmons: uncovering dark modes.
    Schertz F; Schmelzeisen M; Mohammadi R; Kreiter M; Elmers HJ; Schönhense G
    Nano Lett; 2012 Apr; 12(4):1885-90. PubMed ID: 22429148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys.
    Liu Y; Huang CZ
    ACS Nano; 2013 Dec; 7(12):11026-34. PubMed ID: 24279755
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.
    Taylor AB; Kim J; Chon JW
    Opt Express; 2012 Feb; 20(5):5069-81. PubMed ID: 22418312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres.
    Xiao M; Chen H; Ming T; Shao L; Wang J
    ACS Nano; 2010 Nov; 4(11):6565-72. PubMed ID: 20939510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition.
    Hwang WS; Truong PL; Sim SJ
    Anal Biochem; 2012 Feb; 421(1):213-8. PubMed ID: 22146558
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films.
    Rai VN; Srivastava AK; Mukherjee C; Deb SK
    Appl Opt; 2012 May; 51(14):2606-15. PubMed ID: 22614480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toroidal Dipolar Excitation in Metamaterials Consisting of Metal nanodisks and a Dielectrc Spacer on Metal Substrate.
    Tang C; Yan B; Wang Q; Chen J; Yan Z; Liu F; Chen N; Sui C
    Sci Rep; 2017 Apr; 7(1):582. PubMed ID: 28373721
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation.
    Cui Y; Wang X; Ren W; Liu J; Irudayaraj J
    ACS Nano; 2016 Mar; 10(3):3132-43. PubMed ID: 26895095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Edge scattering of surface plasmons excited by scanning tunneling microscopy.
    Zhang Y; Boer-Duchemin E; Wang T; Rogez B; Comtet G; Le Moal E; Dujardin G; Hohenau A; Gruber C; Krenn JR
    Opt Express; 2013 Jun; 21(12):13938-48. PubMed ID: 23787583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays.
    Burrows CP; Barnes WL
    Opt Express; 2010 Feb; 18(3):3187-98. PubMed ID: 20174158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance.
    Hong X; Hall EA
    Analyst; 2012 Oct; 137(20):4712-9. PubMed ID: 22950078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.