These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Finite state control of a variable impedance hybrid neuroprosthesis for locomotion after paralysis. Bulea TC; Kobetic R; Audu ML; Schnellenberger JR; Triolo RJ IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):141-51. PubMed ID: 23193320 [TBL] [Abstract][Full Text] [Related]
4. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia. To CS; Kobetic R; Bulea TC; Audu ML; Schnellenberger JR; Pinault G; Triolo RJ J Rehabil Res Dev; 2014; 51(2):229-44. PubMed ID: 24933721 [TBL] [Abstract][Full Text] [Related]
5. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835 [TBL] [Abstract][Full Text] [Related]
6. Comparison of functional electrical stimulation to long leg braces for upright mobility for children with complete thoracic level spinal injuries. Bonaroti D; Akers JM; Smith BT; Mulcahey MJ; Betz RR Arch Phys Med Rehabil; 1999 Sep; 80(9):1047-53. PubMed ID: 10489007 [TBL] [Abstract][Full Text] [Related]
7. Restoration of stance phase knee flexion during walking after spinal cord injury using a variable impedance orthosis. Bulea TC; Kobetic R; Triolo RJ Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():608-11. PubMed ID: 22254383 [TBL] [Abstract][Full Text] [Related]
8. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking. To CS; Kirsch RF; Kobetic R; Triolo RJ IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904 [TBL] [Abstract][Full Text] [Related]
9. Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis. Kirsch NA; Bao X; Alibeji NA; Dicianno BE; Sharma N IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):224-232. PubMed ID: 28952946 [TBL] [Abstract][Full Text] [Related]
10. Understanding stand-to-sit maneuver: implications for motor system neuroprostheses after paralysis. Chang SR; Kobetic R; Triolo RJ J Rehabil Res Dev; 2014; 51(9):1339-51. PubMed ID: 25786073 [TBL] [Abstract][Full Text] [Related]
11. The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. King CE; Wang PT; McCrimmon CM; Chou CC; Do AH; Nenadic Z J Neuroeng Rehabil; 2015 Sep; 12():80. PubMed ID: 26400061 [TBL] [Abstract][Full Text] [Related]
12. Implanted Functional Neuromuscular Stimulation systems for individuals with cervical spinal cord injuries: clinical case reports. Triolo RJ; Bieri C; Uhlir J; Kobetic R; Scheiner A; Marsolais EB Arch Phys Med Rehabil; 1996 Nov; 77(11):1119-28. PubMed ID: 8931521 [TBL] [Abstract][Full Text] [Related]
13. Performance of epimysial stimulating electrodes in the lower extremities of individuals with spinal cord injury. Uhlir JP; Triolo RJ; Davis JA; Bieri C IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):279-87. PubMed ID: 15218941 [TBL] [Abstract][Full Text] [Related]
14. A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics. Kirsch N; Alibeji N; Fisher L; Gregory C; Sharma N Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2557-60. PubMed ID: 25570512 [TBL] [Abstract][Full Text] [Related]
15. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016. Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730 [TBL] [Abstract][Full Text] [Related]
16. A stimulation-driven exoskeleton for walking after paraplegia. Chang SR; Nandor MJ; Lu Li ; Foglyano KM; Schnellenberger JR; Kobetic R; Quinn RD; Triolo RJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6369-6372. PubMed ID: 28269706 [TBL] [Abstract][Full Text] [Related]
17. Feasibility of closed-loop controller for righting seated posture after spinal cord injury. Murphy JO; Audu ML; Lombardo LM; Foglyano KM; Triolo RJ J Rehabil Res Dev; 2014; 51(5):747-60. PubMed ID: 25333890 [TBL] [Abstract][Full Text] [Related]
18. A neuroprosthesis for control of seated balance after spinal cord injury. Audu ML; Lombardo LM; Schnellenberger JR; Foglyano KM; Miller ME; Triolo RJ J Neuroeng Rehabil; 2015 Jan; 12():8. PubMed ID: 25608888 [TBL] [Abstract][Full Text] [Related]
19. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Dunkelberger N; Schearer EM; O'Malley MK Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251 [TBL] [Abstract][Full Text] [Related]
20. Preliminary evaluation of a controlled-brake orthosis for FES-aided gait. Goldfarb M; Korkowski K; Harrold B; Durfee W IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):241-8. PubMed ID: 14518787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]