BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25438093)

  • 1. Predicting the voltage dependence of interfacial electrochemical processes at lithium-intercalated graphite edge planes.
    Leung K
    Phys Chem Chem Phys; 2015 Jan; 17(3):1637-43. PubMed ID: 25438093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy.
    Wang F; Graetz J; Moreno MS; Ma C; Wu L; Volkov V; Zhu Y
    ACS Nano; 2011 Feb; 5(2):1190-7. PubMed ID: 21218844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of edge orientation in kinetics of electrochemical intercalation of lithium-ion at graphite.
    Yamada Y; Miyazaki K; Abe T
    Langmuir; 2010 Sep; 26(18):14990-4. PubMed ID: 20715871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The staging mechanism of AlCl
    Bhauriyal P; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Mar; 19(11):7980-7989. PubMed ID: 28263339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries.
    Qi X; Blizanac B; DuPasquier A; Meister P; Placke T; Oljaca M; Li J; Winter M
    Phys Chem Chem Phys; 2014 Dec; 16(46):25306-13. PubMed ID: 25335810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of dissolution of a lithium salt in an electrolytic solvent in a lithium ion secondary battery: a direct ab initio molecular dynamics (AIMD) study.
    Tachikawa H
    Chemphyschem; 2014 Jun; 15(8):1604-10. PubMed ID: 24616076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of Li-intercalated oligopyridines: a comparative study by photoelectron spectroscopy.
    Doherty WJ; Friedlein R; Renouard T; Mathis C; Salaneck WR
    J Chem Phys; 2007 Mar; 126(9):094708. PubMed ID: 17362119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes.
    Yoshida K; Nakamura M; Kazue Y; Tachikawa N; Tsuzuki S; Seki S; Dokko K; Watanabe M
    J Am Chem Soc; 2011 Aug; 133(33):13121-9. PubMed ID: 21774493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes.
    Yamada Y; Usui K; Chiang CH; Kikuchi K; Furukawa K; Yamada A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10892-9. PubMed ID: 24670260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on the correlation between the nature of atomic Li intercalation and electrochemical reactivity in TiS2 and TiO2.
    Kim YS; Kim HJ; Jeon YA; Kang YM
    J Phys Chem A; 2009 Feb; 113(6):1129-33. PubMed ID: 19138089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio study of charge transfer between lithium and aromatic hydrocarbons. Can the results be directly transferred to the lithium-graphene interaction?
    Sadlej-Sosnowska N
    J Phys Chem A; 2014 Aug; 118(34):7044-51. PubMed ID: 25068760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.
    Okuno Y; Ushirogata K; Sodeyama K; Tateyama Y
    Phys Chem Chem Phys; 2016 Mar; 18(12):8643-53. PubMed ID: 26948716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application.
    Kumar A; Reddy AL; Mukherjee A; Dubey M; Zhan X; Singh N; Ci L; Billups WE; Nagurny J; Mital G; Ajayan PM
    ACS Nano; 2011 Jun; 5(6):4345-9. PubMed ID: 21609023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.
    Leung K; Budzien JL
    Phys Chem Chem Phys; 2010 Jul; 12(25):6583-6. PubMed ID: 20502786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.
    Cresce AV; Russell SM; Borodin O; Allen JA; Schroeder MA; Dai M; Peng J; Gobet MP; Greenbaum SG; Rogers RE; Xu K
    Phys Chem Chem Phys; 2016 Dec; 19(1):574-586. PubMed ID: 27918030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetically Determined Phase Transition from Stage II (LiC
    Liu Q; Li S; Wang S; Zhang X; Zhou S; Bai Y; Zheng J; Lu X
    J Phys Chem Lett; 2018 Sep; 9(18):5567-5573. PubMed ID: 30198723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies.
    Leung K; Qi Y; Zavadil KR; Jung YS; Dillon AC; Cavanagh AS; Lee SH; George SM
    J Am Chem Soc; 2011 Sep; 133(37):14741-54. PubMed ID: 21797223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.