BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25438167)

  • 1. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.
    Li Z; Gorfe AA
    Nanoscale; 2015 Jan; 7(2):814-24. PubMed ID: 25438167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry.
    Agudo-Canalejo J; Lipowsky R
    ACS Nano; 2015; 9(4):3704-20. PubMed ID: 25840649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell-Nanoparticle Interaction.
    Zhang L; Feng Q; Wang J; Zhang S; Ding B; Wei Y; Dong M; Ryu JY; Yoon TY; Shi X; Sun J; Jiang X
    ACS Nano; 2015 Oct; 9(10):9912-21. PubMed ID: 26448362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-mediated interactions between nanoparticles on a substrate.
    Liang Q; Chen QH; Ma YQ
    J Phys Chem B; 2010 Apr; 114(16):5359-64. PubMed ID: 20369863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of geometric nanoparticle rotation on cellular internalization process.
    Yang K; Yuan B; Ma YQ
    Nanoscale; 2013 Sep; 5(17):7998-8006. PubMed ID: 23863854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Waltz" of Cell Membrane-Coated Nanoparticles on Lipid Bilayers: Tracking Single Particle Rotation in Ligand-Receptor Binding.
    Yu Y; Gao Y; Yu Y
    ACS Nano; 2018 Dec; 12(12):11871-11880. PubMed ID: 30421608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes.
    Kim S; Seo J; Park HH; Kim N; Oh JW; Nam JM
    Acc Chem Res; 2019 Oct; 52(10):2793-2805. PubMed ID: 31553568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-mediated aggregation of anisotropically curved nanoparticles.
    Olinger AD; Spangler EJ; Kumar PB; Laradji M
    Faraday Discuss; 2016; 186():265-75. PubMed ID: 26778353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing nanoparticle translocation through membranes by computer simulations.
    Ding HM; Tian WD; Ma YQ
    ACS Nano; 2012 Feb; 6(2):1230-8. PubMed ID: 22208867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.
    Liang J; Chen P; Dong B; Huang Z; Zhao K; Yan LT
    Biomacromolecules; 2016 May; 17(5):1834-44. PubMed ID: 27049403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.
    Cheow WS; Hadinoto K
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):214-20. PubMed ID: 21439797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing a nanoparticle-containing polymeric substrate for detecting cancer cells by computer simulations.
    Huang LY; Yu YS; Lu X; Ding HM; Ma YQ
    Nanoscale; 2019 Jan; 11(5):2170-2178. PubMed ID: 30376020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the Interaction of Nanoparticles with Cell Membranes by the Polymeric Tether.
    Ni SD; Yin YW; Li XL; Ding HM; Ma YQ
    Langmuir; 2019 Oct; 35(39):12851-12857. PubMed ID: 31474103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices.
    Kim Y; Lee Chung B; Ma M; Mulder WJ; Fayad ZA; Farokhzad OC; Langer R
    Nano Lett; 2012 Jul; 12(7):3587-91. PubMed ID: 22716029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.
    Li S; Luo Z; Xu Y; Ren H; Deng L; Zhang X; Huang F; Yue T
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):2096-2105. PubMed ID: 28782501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase changes in mixed lipid/polymer membranes by multivalent nanoparticle recognition.
    Olubummo A; Schulz M; Schöps R; Kressler J; Binder WH
    Langmuir; 2014 Jan; 30(1):259-67. PubMed ID: 24359326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform.
    Mandal B; Bhattacharjee H; Mittal N; Sah H; Balabathula P; Thoma LA; Wood GC
    Nanomedicine; 2013 May; 9(4):474-91. PubMed ID: 23261500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane curvature based lipid sorting using a nanoparticle patterned substrate.
    Black JC; Cheney PP; Campbell T; Knowles MK
    Soft Matter; 2014 Mar; 10(12):2016-23. PubMed ID: 24652483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.