These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 25438167)

  • 41. Membrane monolayer protrusion mediates a new nanoparticle wrapping pathway.
    Yue T; Zhang X; Huang F
    Soft Matter; 2014 Mar; 10(12):2024-34. PubMed ID: 24652443
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antibiotic polymeric nanoparticles for biofilm-associated infection therapy.
    Cheow WS; Hadinoto K
    Methods Mol Biol; 2014; 1147():227-38. PubMed ID: 24664837
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane Bending Effects.
    Park H; Sut TN; Yoon BK; Zhdanov VP; Kim JW; Cho NJ; Jackman JA
    J Phys Chem Lett; 2022 Feb; 13(6):1480-1488. PubMed ID: 35129365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays.
    Lu B; Smith T; Schmidt JJ
    Nanoscale; 2015 May; 7(17):7858-66. PubMed ID: 25853986
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.
    Broda E; Mickler FM; Lächelt U; Morys S; Wagner E; Bräuchle C
    J Control Release; 2015 Sep; 213():79-85. PubMed ID: 26134072
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Artificial biomembrane morphology: a dissipative particle dynamics study.
    Becton M; Averett R; Wang X
    J Biomol Struct Dyn; 2018 Aug; 36(11):2976-2987. PubMed ID: 28853329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Utilization of Polymer-Lipid Hybrid Nanoparticles for Targeted Anti-Cancer Therapy.
    Mohanty A; Uthaman S; Park IK
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32977707
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coarse-grained modeling of vesicle responses to active rotational nanoparticles.
    Zhang L; Wang X
    Nanoscale; 2015 Aug; 7(32):13458-67. PubMed ID: 26140682
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells.
    Fekete T; Mészáros M; Szegletes Z; Vizsnyiczai G; Zimányi L; Deli MA; Veszelka S; Kelemen L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39018-39029. PubMed ID: 34397215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring membrane and protein dynamics with dissipative particle dynamics.
    Guigas G; Morozova D; Weiss M
    Adv Protein Chem Struct Biol; 2011; 85():143-82. PubMed ID: 21920323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insight into the mechanism of antimicrobial poly(phenylene ethynylene) polyelectrolytes: interactions with phosphatidylglycerol lipid membranes.
    Ding L; Chi EY; Chemburu S; Ji E; Schanze KS; Lopez GP; Whitten DG
    Langmuir; 2009 Dec; 25(24):13742-51. PubMed ID: 20560549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of Shape on Interaction Dynamics of Tetrahedral Nanoplastics and the Cell Membrane.
    Yong X; Du K
    J Phys Chem B; 2023 Feb; 127(7):1652-1663. PubMed ID: 36763902
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles.
    Ding HM; Ma YQ
    Biomaterials; 2012 Aug; 33(23):5798-802. PubMed ID: 22607914
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoparticle-Mediated Mechanical Destruction of Cell Membranes: A Coarse-Grained Molecular Dynamics Study.
    Zhang L; Zhao Y; Wang X
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26665-26673. PubMed ID: 28719184
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.
    Biswas N; Bhattacharya R; Saha A; Jana NR; Basu JK
    Phys Chem Chem Phys; 2015 Oct; 17(37):24238-47. PubMed ID: 26327393
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study of interactions between polymer nanoparticles and cell membranes at atomistic levels.
    Yong CW
    Philos Trans R Soc Lond B Biol Sci; 2015 Feb; 370(1661):20140036. PubMed ID: 25533094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.