BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25438168)

  • 1. Evidence for a catalytic six-membered cyclic transition state in aminolysis of 4-nitrophenyl 3,5-dinitrobenzoate in acetonitrile: comparative brønsted-type plot, entropy of activation, and deuterium kinetic isotope effects.
    Um IH; Kim MY; Bae AR; Dust JM; Buncel E
    J Org Chem; 2015 Jan; 80(1):217-22. PubMed ID: 25438168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic study on SNAr reaction of 1-(y-substituted-phenoxy)-2,4-dinitrobenzenes with cyclic secondary amines in acetonitrile: evidence for cyclic transition-state structure.
    Um IH; Kim MY; Kang TA; Dust JM
    J Org Chem; 2014 Aug; 79(15):7025-31. PubMed ID: 25004104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study on Michael-type reactions of β-nitrostyrenes with cyclic secondary amines in acetonitrile: transition-state structures and reaction mechanism deduced from negative enthalpy of activation and analyses of LFERs.
    Um IH; Kang JS; Park JY
    J Org Chem; 2013 Jun; 78(11):5604-10. PubMed ID: 23656454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of aminolysis of 2-pyridyl and 4-pyridyl x-substituted benzoates in acetonitrile: evidence for a concerted mechanism involving a cyclic transition state.
    Um IH; Bae AR; Um TI
    J Org Chem; 2014 Feb; 79(3):1206-12. PubMed ID: 24397405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Choice of solvent (MeCN vs H(2)O) decides rate-limiting step in S(N)Ar aminolysis of 1-fluoro-2,4-dinitrobenzene with secondary amines: importance of Brønsted-type analysis in acetonitrile.
    Um IH; Min SW; Dust JM
    J Org Chem; 2007 Nov; 72(23):8797-803. PubMed ID: 17949108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic nature of substituent X governs reaction mechanism in aminolysis of 4-pyridyl X-substituted-benzoates in acetonitrile.
    Um IH; Bae AR
    J Org Chem; 2012 Jul; 77(13):5781-7. PubMed ID: 22668080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminolyses of aryl diphenylphosphinates and diphenylphosphinothioates: effect of modification of electrophilic center from P=O to P=S.
    Um IH; Akhtar K; Shin YH; Han JY
    J Org Chem; 2007 May; 72(10):3823-9. PubMed ID: 17425371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aminolysis of N-aroyl beta-lactams occurs by a concerted mechanism.
    Tsang WY; Ahmed N; Page MI
    Org Biomol Chem; 2007 Feb; 5(3):485-93. PubMed ID: 17252131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminolysis of 4-nitrophenyl phenyl carbonate and thionocarbonate: effects of amine nature and modification of electrophilic center from C[double bond]O to C[double bond]S on reactivity and mechanism.
    Um IH; Yoon S; Park HR; Han HJ
    Org Biomol Chem; 2008 May; 6(9):1618-24. PubMed ID: 18421395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly enantioselective zirconium-catalyzed cyclization of aminoalkenes.
    Manna K; Everett WC; Schoendorff G; Ellern A; Windus TL; Sadow AD
    J Am Chem Soc; 2013 May; 135(19):7235-50. PubMed ID: 23631736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminolysis of Y-substituted phenyl X-substituted cinnamates and benzoates: effect of modification of the nonleaving group from benzoyl to cinnamoyl.
    Um IH; Park YM; Fujio M; Mishima M; Tsuno Y
    J Org Chem; 2007 Jun; 72(13):4816-21. PubMed ID: 17523667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and mechanistic investigation of the aminolysis of 3-methoxyphenyl 3-nitrophenyl thionocarbonate, 3-chlorophenyl 3-nitrophenyl thionocarbonate, and bis(3-nitrophenyl) thionocarbonate.
    Castro EA; Galvez A; Leandro L; Santos JG
    J Org Chem; 2002 Jun; 67(12):4309-15. PubMed ID: 12054968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ir(COD)Cl]2 as a catalyst precursor for the intramolecular hydroamination of unactivated alkenes with primary amines and secondary alkyl- or arylamines: a combined catalytic, mechanistic, and computational investigation.
    Hesp KD; Tobisch S; Stradiotto M
    J Am Chem Soc; 2010 Jan; 132(1):413-26. PubMed ID: 20000354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminolysis of 2,4-dinitrophenyl X-substituted benzoates and Y-substituted phenyl benzoates in MeCN: effect of the reaction medium on rate and mechanism.
    Um IH; Jeon SE; Seok JA
    Chemistry; 2006 Jan; 12(4):1237-43. PubMed ID: 16267870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical studies on the nucleofugality patterns in the aminolysis and phenolysis of S-aryl O-aryl thiocarbonates.
    Castro EA; Aliaga M; Campodónico PR; Cepeda M; Contreras R; Santos JG
    J Org Chem; 2009 Dec; 74(23):9173-9. PubMed ID: 19908875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminolysis of O-aryl thionobenzoates: amine basicity combines with modulation of the nature of substituents in the leaving group and thionobenzoate moiety to control the reaction mechanism.
    Um IH; Hwang SJ; Yoon S; Jeon SE; Bae SK
    J Org Chem; 2008 Oct; 73(19):7671-7. PubMed ID: 18767804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanism of the aminolysis of O-aryl S-methyl thiocarbonates.
    Castro EA; Aliaga M; Santos JG
    J Org Chem; 2005 Apr; 70(7):2679-85. PubMed ID: 15787559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereochemistry and mechanism of the Brønsted acid catalyzed intramolecular hydrofunctionalization of an unactivated cyclic alkene.
    Brooner RE; Widenhoefer RA
    Chemistry; 2011 May; 17(22):6170-8. PubMed ID: 21506179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.