These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25438297)
1. Hybrid molecular brushes with chitosan backbone: facile synthesis and surface grafting. Hall-Edgefield DL; Shi T; Nguyen K; Sidorenko A ACS Appl Mater Interfaces; 2014 Dec; 6(24):22026-33. PubMed ID: 25438297 [TBL] [Abstract][Full Text] [Related]
2. Design of hybrid molecular brushes with reversible surface adaptability on exposure to specific solvents. Chawathe M; Patel A; Jonnalagadda S; Sidorenko A Biointerphases; 2018 Jul; 13(4):041006. PubMed ID: 30001629 [TBL] [Abstract][Full Text] [Related]
3. Surface reconstruction by a "grafting through" approach: polyacrylamide grafted onto chitosan film. Chu E; Sidorenko A Langmuir; 2013 Oct; 29(40):12585-92. PubMed ID: 24024703 [TBL] [Abstract][Full Text] [Related]
5. Poly(L-lysine)-graft-chitosan copolymers: synthesis, characterization, and gene transfection effect. Yu H; Chen X; Lu T; Sun J; Tian H; Hu J; Wang Y; Zhang P; Jing X Biomacromolecules; 2007 May; 8(5):1425-35. PubMed ID: 17425363 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
7. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes. Khanduyeva N; Senkovskyy V; Beryozkina T; Horecha M; Stamm M; Uhrich C; Riede M; Leo K; Kiriy A J Am Chem Soc; 2009 Jan; 131(1):153-61. PubMed ID: 19128176 [TBL] [Abstract][Full Text] [Related]
8. Accelerated cell-sheet recovery from a surface successively grafted with polyacrylamide and poly(N-isopropylacrylamide). Akiyama Y; Kikuchi A; Yamato M; Okano T Acta Biomater; 2014 Aug; 10(8):3398-408. PubMed ID: 24681372 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of temperature-sensitive microspheres based on acrylamide grafted hydroxypropyl cellulose and chitosan for the controlled release of amoxicillin trihydrate. Bulut E; Turhan Y Int J Biol Macromol; 2021 Nov; 191():1191-1203. PubMed ID: 34614414 [TBL] [Abstract][Full Text] [Related]
10. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Essawy HA; Ghazy MB; El-Hai FA; Mohamed MF Int J Biol Macromol; 2016 Aug; 89():144-51. PubMed ID: 27126169 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and self-assembly of chitosan-g-polystyrene copolymer: a new route for the preparation of heavy metal nanoparticles. Francis R; Baby DK; Gnanou Y J Colloid Interface Sci; 2015 Jan; 438():110-115. PubMed ID: 25454432 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of surface-grafted polyacrylamide brushes and their inhibition of microbial adhesion. Cringus-Fundeanu I; Luijten J; van der Mei HC; Busscher HJ; Schouten AJ Langmuir; 2007 Apr; 23(9):5120-6. PubMed ID: 17388616 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and magnetic properties of biocompatible hybrid hollow spheres. Ding Y; Hu Y; Zhang L; Chen Y; Jiang X Biomacromolecules; 2006 Jun; 7(6):1766-72. PubMed ID: 16768396 [TBL] [Abstract][Full Text] [Related]
14. In Situ Characterization of Binary Mixed Polymer Brush-Grafted Silica Nanoparticles in Aqueous and Organic Solvents by Cryo-Electron Tomography. Fox TL; Tang S; Horton JM; Holdaway HA; Zhao B; Zhu L; Stewart PL Langmuir; 2015 Aug; 31(31):8680-8. PubMed ID: 26174179 [TBL] [Abstract][Full Text] [Related]
15. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Wang JP; Chen YZ; Zhang SJ; Yu HQ Bioresour Technol; 2008 Jun; 99(9):3397-402. PubMed ID: 17888656 [TBL] [Abstract][Full Text] [Related]
16. RAFT-mediated synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] brushes for quantitative DNA immobilization. Demirci S; Caykara T Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):111-20. PubMed ID: 25428051 [TBL] [Abstract][Full Text] [Related]
17. Novel high-viscosity polyacrylamidated chitosan for neural tissue engineering: fabrication of anisotropic neurodurable scaffold via molecular disposition of persulfate-mediated polymer slicing and complexation. Kumar P; Choonara YE; du Toit LC; Modi G; Naidoo D; Pillay V Int J Mol Sci; 2012 Oct; 13(11):13966-84. PubMed ID: 23203044 [TBL] [Abstract][Full Text] [Related]
18. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Pan G; Zhang Y; Guo X; Li C; Zhang H Biosens Bioelectron; 2010 Nov; 26(3):976-82. PubMed ID: 20837394 [TBL] [Abstract][Full Text] [Related]
19. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring. Borisova OV; Billon L; Richter RP; Reimhult E; Borisov OV Langmuir; 2015 Jul; 31(27):7684-94. PubMed ID: 26070329 [TBL] [Abstract][Full Text] [Related]
20. Brushes, Graft Copolymers, or Bottlebrushes? The Effect of Polymer Architecture on the Nanotribological Properties of Grafted-from Assemblies. Yan W; Ramakrishna SN; Spencer ND; Benetti EM Langmuir; 2019 Sep; 35(35):11255-11264. PubMed ID: 31394039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]