These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25438578)

  • 1. [Transverse folding and the evolution of hind wings in beetles (Insecta, Coleoptera)].
    Fedorenko DN
    Zh Obshch Biol; 2013; 74(6):472-87. PubMed ID: 25438578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The function of resilin in beetle wings.
    Haas F; Gorb S; Blickhan R
    Proc Biol Sci; 2000 Jul; 267(1451):1375-81. PubMed ID: 10983820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography.
    Saito K; Nomura S; Yamamoto S; Niiyama R; Okabe Y
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5624-5628. PubMed ID: 28507159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturization re-establishes symmetry in the wing folding patterns of featherwing beetles.
    Petrov PN; Farisenkov SE; Polilov AA
    Sci Rep; 2020 Oct; 10(1):16458. PubMed ID: 33020523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands.
    Blanke A
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric morphometrics analysis of the hind wing of leaf beetles: proximal and distal parts are separate modules.
    Ren J; Bai M; Yang XK; Zhang RZ; Ge SQ
    Zookeys; 2017; (685):131-149. PubMed ID: 29089842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review: Learning from the flight of beetles.
    Song Z; Tong J; Pfleging W; Sun J
    Comput Biol Med; 2021 Jun; 133():104397. PubMed ID: 33895456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and evolution of the stigmapophysis-A unique repose wing-coupling structure in Psocodea.
    Ogawa N; Yoshizawa K
    Arthropod Struct Dev; 2018 Jul; 47(4):416-422. PubMed ID: 29932971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. II. Wing reduction and the sensory field.
    Frantsevich L; Gorb S; Radchenko V; Gladun D; Polilov A; Cherney L; Browdy V; Kovalev M
    Arthropod Struct Dev; 2015 Jan; 44(1):1-9. PubMed ID: 25449977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wing morphology in featherwing beetles (Coleoptera: Ptiliidae): Features associated with miniaturization and functional scaling analysis.
    Polilov AA; Reshetnikova NI; Petrov PN; Farisenkov SE
    Arthropod Struct Dev; 2019 Jan; 48():56-70. PubMed ID: 30630116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae).
    Bai M; McCullough E; Song KQ; Liu WG; Yang XK
    PLoS One; 2011; 6(6):e21600. PubMed ID: 21738727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of and structures involved in wing folding in featherwing beetles (Coleoptera: Ptiliidae).
    Petrov PN; Reshetnikova NI; Farisenkov SE; Polilov AA
    Arthropod Struct Dev; 2024 Oct; 83():101394. PubMed ID: 39426245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards an evolutionary history of European-Alpine Trechus ground beetles: Species groups and wing reduction.
    Möst MH; Donabauer M; Arthofer W; Schlick-Steiner BC; Steiner FM
    Mol Phylogenet Evol; 2020 Aug; 149():106822. PubMed ID: 32294546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera).
    Ogawa N; Yoshizawa K
    J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary history of carabid ground beetles with special reference to morphological variations of the hind-wings.
    Imura Y; Tominaga O; Su ZH; Kashiwai N; Okamoto M; Osawa S
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(9):360-371. PubMed ID: 30416176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae).
    Bai M; Beutel RG; Song KQ; Liu WG; Malqin H; Li S; Hu XY; Yang XK
    Arthropod Struct Dev; 2012 Sep; 41(5):505-13. PubMed ID: 22659152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology of the elytral base sclerites.
    Sugimoto M; Ogawa N; Yoshizawa K
    Arthropod Struct Dev; 2018 Jul; 47(4):423-429. PubMed ID: 29452203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characteristics of the rigid elytra in a bamboo weevil beetle Cyrtotrachelus buqueti.
    Li X; Zheng Y
    IET Nanobiotechnol; 2022 Sep; 16(7-8):273-283. PubMed ID: 35962575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.